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The peripheral and central glucagon-like-peptide-1 (GLP-1) systems play an essential role in glycemic and
energy balance regulation. Thus, pharmacological targeting of peripheral and/or central GLP-1 receptors
(GLP-1R) may represent a potential long-term treatment option for both obesity and type-II diabetes
mellitus (T2DM). Uncovering and understanding the neural pathways, physiological mechanisms, specific
GLP-1R populations, and intracellular signaling cascades that mediate the food intake inhibitory and incretin
effects produced by GLP-1R activation are vital to the development of these potential successful therapeutics.
Particular focus will be given to the essential role of the nucleus tractus solitarius (NTS) in the caudal
brainstem, as well as the gut-to-brain communication by vagal afferent fibers in mediating the physiological
and behavioral responses following GLP-1R activation.
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1. Introduction

The incidence of obesity and type 2 diabetes mellitus (T2DM) has
risen dramatically in the United States over the last two decades.
Promising results from a range of clinical and animal studies focus
attention on the merits of glucagon-like-peptide-1 (GLP-1) physiology
and pharmacology in offering positive treatment outcomes for both
diseases. GLP-1, a posttranslational product of proglucagon, is a
neuropeptide that is endogenously released principally from two
distinct sources: 1) “L” cells in the gastrointestinal (GI) tract following
nutrient entry [1–3]; and 2) neurons of the nucleus tractus solitarius
(NTS) in the caudal brainstem that project to GLP-1 receptors (GLP-1R)
both locally and throughout the brain [4–6]. Exogenous stimulation of
either peripheral or central GLP-1Rs engages a set of physiological
responses that include reduced food intake [7–11], inhibition of gastric
emptying [7,12], and increased glucose-stimulated insulin secretion
[13–15]. However, our understanding of the neural pathways, physio-
logical mechanisms, specific GLP-1R populations, and intracellular
signaling cascades that mediate the food intake inhibitory and incretin
effects produced by endogenous or exogenous GLP-1R activation is
limited. One neuronal population within the CNS clearly stands out in
mediating the intake inhibitory effects of both theperipheral and central
GLP-1 systems: theNTS [6,16–20]. The goal of this review is to elucidate
the neuroendocrinemechanismsmediating the intake inhibitory effects
that follow activation of both peripheral and central GLP-1Rs, with
special emphasis focused on the role of the NTS and the gut-to-brain
communication by vagal afferent fibers in GLP-1R-mediated physiolog-
ical and behavioral responses.

2. Distribution and metabolism of endogenous GLP-1

Asingle geneencodesproglucagon (precursor toGLP-1) inmammals,
with identical mRNA produced in the GI tract, pancreas, and the NTS of
the caudal brainstem [4,21,22]. Differences in the proglucagon cleavage
products in these tissues are due to tissue-specific posttranslational
processing of proglucagon (for review see [22,23]). GLP-1(7–36) amide,
a posttranslational product of proglucagon in the GI tract and the NTS,
has a sequence that is 100% preserved in all mammals [24]. In the pe-
riphery, the majority of intestinal proglucagon-derived peptides,
including GLP-1, are secreted from L cells in the distal small intestine
(i.e., fromproximal jejunum to distal ileum) [22,25]. Interestingly, recent
identification of GLP-1-positive/α-gustducin-positive cells expressing
T1R3, a subunit of both the sweet and umami taste receptors, have also
been identified in the oral cavity, aswell as the small intestine [23,26,27].
Additionally, a very small percentage of GLP-1 is also secreted from the
pancreas following ingestion of a meal; although the amino acid
sequence differs from intestinally derived GLP-1 (1–36 amide vs. 7–36
amide for pancreas vs. intestine, respectively) [22,28]. In contrast to fairly
distributed sources within the periphery for endogenous GLP-1-
secreting cells, NTS neurons represent the only known central source
of endogenous GLP-1, with GLP-1-immunoreactive NTS neurons pro-
jecting to numerous GLP-1R-expressing neurons within the brain nuclei
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relevant to energy balance, including the paraventricular nucleus (PVN)
and dorsalmedial nucleus of the hypothalamus (DMH), aswell as caudal
brainstem structures such as the parabrachial nucleus (PBN), area
postrema (AP), and endemically within the NTS [4].

The metabolism and degradation of endogenous GLP-1 by the
enzyme dipeptidyl-peptidase-4 (DPP-IV) is very rapid. It is estimated
that b25% of GLP-1 secreted from the GI tract enters the portal vein in
an intact, active form prior to reaching the liver. Further degradation
occurs rapidly within the liver (40–50% of the remaining GLP-1 not
initially degraded byDPP-IV). Thus, atmost,∼10–15% of endogenously
secreted GLP-1 reaches systemic circulation in the intact form. This
rapid degradation continues via circulating DPP-IV, and limits the total
half-life of GLP-1 to the order of 1–2 min (see for review [22]). Given
that DPP-IV is expressed heavily in both the enterocyte brush border
and the endothelial cells lining the capillaries of the lamina propria of
the small intestine, it is logical to assume that like other gut-peptides
[e.g. cholecystokinin (CCK)], intestinally derived GLP-1 may act in a
paracrine-like fashion, preferentially activating GLP-1Rs located
adjacent to the site of release, rather than more distal destinations
(see [29] for review of paracrine action of gut-peptides). The limited
penetration of biologically active peripheral GLP-1 into the central
nervous system (CNS) [22,30] and rapid degradation rate of endog-
enous peripheral GLP-1 have led to two separate emerging pharma-
cological approaches taking advantage of the peripheral GLP-1 system
to treat T2DMand obesity: DPP-IV inhibitors (e.g. Sitagliptin [Januvia])
and DPP-IV-resistant GLP-1R analogues (e.g. Exendin-4 [Byetta],
Liraglutide [Victoza]). Both of these clinical strategies target the
treatment of T2DM by improving glycemia control, and preliminary
clinical evidence suggests that long-acting GLP-1R agonists (Liraglu-
tide and Exendin-4) may also produceweight loss as a consequence of
reduced food intake [31–33].
3. Peripheral GLP-1

The food intake inhibitory and incretin effects of peripheral GLP-1
are mediated, at least in part, by a neural pathway involving the vagus
nerve [20,22]. Once secreted, GLP-1 activates GLP-1R-bearing
vagal afferent neurons both in a paracrine-like fashion (local to the
site of release in the small intestine) and in an endocrine-like fashion
at GLP-1Rs in the portal vein, liver, and upper GI tract [20,34]. GLP-1R-
mediated vagal afferent signals are processed by CNS neurons which
then drive neuroendocrine, behavioral, and physiological responses
that result in improved glycemic control and reduced feeding.
One such neuroendocrine response to vagal afferent activation by
GLP-1 is the subsequent vagal efferent neural transmission to the
pancreatic β-cell, resulting in insulin secretion [22,35,36]. Support for
the GLP-1R-mediated vago-vagal incretin response comes from
findings showing that blockade of either afferent or efferent vagal
transmission eliminates the GLP-1-induced augmented insulin re-
sponse seen in glucose-treated rodents, indicating that both sensory
and motor components of the vagus are essential to mediate GLP-1R-
induced insulin secretion from the β-cell [36,37].

It remains unclear whether endocrine-like GLP-1 signaling in the
hepatoportal region [34,38] or paracrine-like GLP-1 signalingwithin the
intestine represent the primary site of GLP-1R activation for energy
balance andglycemic control.Moreover, it is unknownwhetherGLP-1Rs
expressed on central axon terminals of vagal afferent fibers in the
medulla also mediate GI vagal signals involved in glycemic and food
intake control, as recent literature focuses solely on the role of GLP-1Rs
expressed on peripheral terminals of vagal afferents in mediating GLP-1
effects. That is, vagal afferent fibers express GLP-1Rs and other gut-
peptide receptors on the central terminals (axon) of the vagus, prior to
the synapse with the NTS [39]. That activation of GLP-1Rs on these
central terminals maymodulate vagal transmissions to the NTS in a pre-
synaptic fashion.
4. Intake inhibitory effects following peripheral GLP-1R activation

It is well established that systemic administration of exogenous
GLP-1(7–36) or GLP-1R analogues (e.g. Liraglutide, Exanatide)
reduces food intake in a dose-dependent manner in rodents, non-
human primates and humans [11,16,40–42]. This intake inhibitory
effect of peripheral pharmacological GLP-1R activation is sustained in
obese humans even in the presence of T2DM [43,44], and has
therefore prompted research evaluating the efficacy of DPP-IV-
resistant GLP-1R ligands as candidates for obesity treatment. Indeed,
systemic administration of either Liraglutide or Exanatide has been
shown to reduce bodyweight in both animal models and humans (see
for review [22,45]). Interestingly, it appears that pharmacological
activation of systemic GLP-1Rs (2× daily administration of Byetta
[Exanatide]) produces the greatest magnitude of weight loss in the
most morbidly obese individuals compared to weight loss observed in
overweight or lean humans [31]. While the significant reduction in
body weight for these obese patients following ∼2 years of Byetta
treatment was approximately 11 lb, the slope of weight loss was
sustained over the treatment period [31]. It is possible that chronic
GLP-1R activation following systemic DPP-IV resistant GLP-1R treat-
ments continues to produce intake inhibitory- and body weight
suppressive-responses with a lack of “resistance” (e.g., diminution of
response when ligand levels are chronically elevated). These findings
highlight the need for further evaluation of the GLP-1 systems in
treating not only T2DM but also obesity through the careful design of
more effective pharmacological treatments that chronically target the
peripheral (and perhaps central) GLP-1 system.

The strength of the peripheral GLP-1 system as a candidate for
obesity treatment is highlighted by research employing GLP-1 antag-
onist treatment to assess the endogenous role of this system in intake
control. Recent evidencebyWilliams et al. [30] suggest that endogenous
peripherally secreted GLP-1 plays a physiological role in food intake
suppression by showing that intraperitoneal (IP) administration of the
GLP-1R antagonist, Exendin-9 (9–39), attenuates the intake suppressive
effects that follow voluntary consumption and intragastric infusion of a
liquidmeal in rats. Further, a recent report by Reimer et al. [46] showed
that mice treatedwith the DPP-IV inhibitor NVP DPP728 in the drinking
water decreased weekly food intake when maintained on either
standard rodent chow or high fat diet.

While the effects of peripheral GLP-1 agonist and antagonist treat-
ment support a strong role for this system in the inhibitory controls of
intake and body weight regulation, models of GLP-1R deficiency in
mice have not been consistent with this interpretation. For instance,
the GLP-1R knockout mouse is surprisingly lean, exhibits unaltered
meal patterns, and does not develop obesitywith aging or after several
months of high fat diet maintenance [47,48]. These findings, which
seem to be very different from the profile of responses observed in
humans, non-human primates, and rats, have certainly raised many
questions regarding the role of GLP-1R signaling in food intake and
bodyweight regulation [11,16,40–42]. In fact, clear species differences
have also been reported between mice and rats for GLP-1R-mediated
control of visceral illness; in particular in LiCl-induced anorexia [49].
Likewise, species differences between the mouse and rat have also
been reported with regard to the regulation of central GLP-1-
immunoreactive neurons in the NTS by the adiposity hormone leptin
[50]. It was reported that leptin induced phosphorylation of signal
transducer and activator of transcription-3 (pSTAT3) in 100% of GLP-1
cells in the caudal brainstem of mice, whereas in rats a complete
absence of pSTAT3 was observed in NTS GLP-1-positive neurons
following leptin treatment [50]. Moreover, this same report showed
that inmice, proglucagonmRNAwas reduced by food deprivation, and
this was prevented by leptin administration; whereas proglucagon
mRNAwas unaffected by either fasting or leptin treatment in rats [50].
The take home message here is two-fold: 1) caution should be taken
when making generalizations between the mouse and rat regarding
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the role of peripheral GLP-1 in energy regulation, and 2) the question
of which species (rat or mouse) represents the appropriate model to
understand the normal physiology and pathophysiology of human
diseases is not straight forward, and will always depend on the
physiological system under investigation.

The aforementioned report by Williams et al. [30] directly
addressed the ongoing debate of whether administration of systemic
GLP-1R ligands produce their intake inhibitory response through
activation of peripheral or central GLP-1Rs. They reported that central
blockade of GLP-1R attenuated only the intake suppression by central
GLP-1 administration, whereas the intake suppression following
peripheral (IP) GLP-1 administration was only attenuated following
peripheral administration of the GLP-1R antagonist Exendin-(9–39)
[30]. These findings support the notion that while the direction and
profile of responses are similar for peripheral and central application
of GLP-1R agonists, the two populations of receptors may in fact be
considered the mediators of separate (peripheral vs. central) GLP-1
systems. Further support for this perspective comes from a wide
variety of studies detailed below.

A number of findings support a role for vagal afferent fibers in
mediating the intake suppressive and glycemic responses to exogenous
systemic GLP-1R ligand administration. For instance, elimination of vagal
afferent signaling via surgical or chemical deafferentation of the vagus
attenuates GLP-1R-mediated suppression of food intake and gastric
emptying, and inhibits GLP-1R-mediated increases in gastric acid
secretion and glucose-induced insulin secretion (see [22] for review).
CNS processing of GLP-1R-mediated vagal afferent activation has been
shown to stimulate pancreatic-projecting vagal efferents that enhance
insulin secretion [51]. Thus far, systemic GLP-1R-mediated control of
glycemia has been attributed to either GLP-1R-expressing vagal afferent
nerve terminals in the hepatic portal bed [14,34,38,52], or to direct
activation ofGLP-1Rexpressedonpancreaticβ-cells (see for review [22]).
This conclusion rests on theobservation that intraportal infusionof aGLP-
1R antagonist produced a hyperglycemic response following intragastric
glucose infusion in anesthetized rodents, whereas, delivery of the same
dose of the GLP-1R antagonist to the jugular vein did not alter the plasma
glucose or insulin response following intragastric glucose infusion.
However, a focused examination of the physiological role of GLP-1R
signaling on GI-innervating vagal afferent fibers in glycemic control is
needed. This notion is supported by findings from Rüttimann et al. [53]
showing that the satiating effect of IP, but not intravenously (intrajugular
or intrahepatoportal) administered GLP-1, requires vagal afferent
signaling. Thus, an IP route of administration may represent a more
physiological profile of action for the GLP-1R, taking advantage of the
putative paracrine-like profile of endogenous GLP-1R activation in the
small intestine. It is interesting to consider that general intravenous
administration of GLP-1 (femoral vein infusion) can increase vagal
afferentmass activity [54], andyet this electrophysiological responsedoes
not appear tobe required for the suppression inmeal size by IV infusionof
GLP-1, while vagal activation is required for response production by IP
GLP-1 [20]. The speculative conclusion of this discrepancy is a cautionary
comment: that neuronal excitability of the vagus in an anesthetized
preparation does not always equate to a CNS-dependent behavioral
response (e.g. suppression of ongoing food intake).

The finding of Rüttimann et al. [53] suggests that GLP-1R expressed
on vagal afferents innervating the hepatoportal region may not be
required for mediating the intake suppressive effects of GLP-1. Instead,
the finding that intraportal infusion of a GLP-1R antagonist produces a
hyperglycemic response following intragastric glucose infusion [34]
suggests that for vagal afferent GLP-1R populations in the periphery, the
control of glycemic responses may be dissociable from the food intake
inhibitory responses. Equally likely, however, is that endogenous GLP-1
signalingacting in a paracrine fashionon adjacentGLP-1Rsexpressedon
vagal afferents innervating the GI tract controls both intake and
glycemia, while GLP-1Rs expressed on hepatoportal vagal afferents
only control glycemic responses. Future analysis is certainly needed to
determinewhich populations of peripheral GLP-1Rs are required for the
intake suppressive- and incretin-mediated effects by systemic GLP-1.

An additional interesting piece of evidence with regard to GLP-1's
site-of-action comes from the finding that the meal size suppressive
effects produced by jugularGLP-1R ligandadministrationdonot require
vagal afferent mediation [53]. This suggests that GLP-1R expressed on
splenic fibers may be mediating this response, or that GLP-1 infusion in
the jugular vein, at levels above what would normally be seen under
endogenous circumstances [22], are producing their intake inhibitory
response through direct activation of GLP-1Rs-expressed in the brain,
likely at nuclei classified as or adjacent to circumventricular organs
(CVO). The extremely short half-life (1–2 min) and minimum penetra-
tion through the blood brain barrier by GLP-1makes direct action in the
CNS negligible under endogenous circumstances [22]. Clearly the brain
CVO, e.g. AP and subfornical organ (SFO), plays a role in responses
generated by peripheral endocrine hormones acting in the CNS [55].
However, a very recent report shows that ablationof both theAPand the
SFO does not attenuate the intake inhibitory effects that follow IP
administration of the GLP-1R agonist, Exendin-4 [56]. Thus, splenic
mediation seems to be themore likelymediator of the intake inhibitory
response to GLP-1R ligands present in general circulation (i.e. jugular
vein), particularly when considering recent findings that suggest a
dissociation between the mechanism through which peripheral vs.
central GLP-1R activation produces an intake inhibitory response.

It is generally well accepted that peripheral GLP-1 ligand adminis-
tration (IP, IV, or subcutaneous) reduces food intake through a reduction
inmeal size [20,42], and has even been recently categorized as a satiation
signal [30]. However, a recent preliminary report shows that hindbrain
activation of brain GLP-1Rs reduces food intake by reducing meal
number (thus increasing the inter-meal-interval), not through an alter-
ation in meal size [57]. This finding further highlights the strength of the
GLP-1 systems as potential candidates for obesity treatment, as future
treatments designed to target both peripheral and central GLP-1 systems
would potentially offer an avenue to decrease not only the size of the
meals being consumed, but potentially the number of meals and/or
snacks taken in a day.

5. Efficacy of gastric bypass: a role for GLP-1?

It is an unfortunate reality that to date, the only long-term effective
treatment for morbidly obese patients involves the surgical rewiring of
the GI tract. Even more unfortunate is the realization that these risky
surgical procedures are not effective for everyone, with 20–30% of
patients failing to reach the typical post-operative weight loss or begin
to regain large amounts ofweightwithin thefirst years [58–61]. Andyet,
despite this occurrence, the vast majority of obese individuals
undergoing gastric bypass achieve drastic, life-changing reductions in
their total adiposity and morbidity profile. Perhaps even more
remarkable is that obese patients with T2DM who have undergone
Roux-en-Y-Gastric Bypass exhibit an extremely rapid amelioration of
their diabetes [59,62–64]. This drastic improvement in T2DM by gastric
bypass, which seemingly occurs within days after the surgery, has
promoted a wealth of research aimed at elucidating the mechanisms
that surround this occurrence. Leading candidate ideas including
malabsorption, a behavioral change by the patient regarding the
composition of food ingested, as well as an overall reduction in food
consumed, have proved to be negligible contributors to this phenom-
enon (see [65]). Instead, current thinking is now focused on under-
standingwhat impact gastric bypasshas on theneuroendocrine controls
that govern food intake and glycemic regulation — including both
homeostatic and non-homeostatic peripheral and CNS systems
[62,65,66]. Prevalent among this new emerging research is the idea
that GI-derived incretin hormones, such as GLP-1, serve an integral role
in regulating blood glucose values in post-operative gastric bypass
patient [67]. Indeed, previous studies have shown that obese individuals
who have undergone Roux-en-Y-Gastric Bypass show a rapid and
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sustained increase in postprandial GLP-1 secretion that is greater in
magnitude than that seen in either obese patients who have undergone
gastric bandingor obese controlswith no surgical intervention [67]. This
result raises a number of questions which are now being heavily
investigated: 1) What is the physiological mechanisms that may
account for such an altered postprandial GLP-1 response following
Roux-en-Y GI surgery? 2) Could this dramatic increase in postprandial
GLP-1 secretion contribute to the amelioration of T2DM and reduction
in overall food intake in patients who have undergone Roux-en-Y-
Gastric Bypass? 3) Finally, if GLP-1 and other GI-derived hormones that
are also altered by gastric bypass (e.g. PYY) are the main contributing
force behind the improvements seen in blood glucose/insulin profiles
and potentially food intake inhibition, could pharmacological tools
aimed at targeting the GLP-1 system circumvent the need for obese
patients to undergo surgery?

One speculative reason for the rapid and sustainedpostprandial GLP-1
secretion observed following Roux-en-Y surgery could be that the main
population of GLP-1 secreting L cells in the jejunum and ileum are being
exposed to intraintestinal nutrients sooner and in a much greater
concentration following food ingestion. Support for this idea comes from
the well established fact that the enterochromaffin cells of the small
intestine, such as the L-class cells, are directly responsive to intraluminal
nutrients and thus, secrete specific neuropeptides and neurotransmitters
(see for review [29,68,69]). Of course, the exactmechanisms that account
for this increase in postprandial GLP-1 secretion following Roux-en-Y-
Gastric Bypass warrants further investigation, and the consequences of
such an effect are just beginning to be examined in both humans and
animal models [62,65,66,70–73].

6. CNS processing of the energy balance effects following peripheral
and central GLP-1R activation

Stimulation of central GLP-1Rs results in many of the same
responses (e.g. inhibition of food intake, increased insulin secretion)
that are observed following peripheral GLP-1R ligand administration
[7–9,14]. The effects of GLP-1R stimulation on feeding, gastric
emptying and energetic responses involve behavioral, sympathetic
and parasympathetic effector pathways that are downstream of CNS
processing [74–78]. CNS structures in the ascending visceral afferent
pathway, including include nuclei in the caudal brainstem (NTS; PBN),
hypothalamus (lateral hypothalamus, LH; PVN), and basal forebrain
(bed nucleus of stria terminalis, BNST; central nucleus of the
amygdala) [79,80], may thereby play a role in mediating responses
triggered by peripheral GLP-1R agonist treatment. Central GLP-1R
ligand administration activates neurons (Fos-LI) in many of these
same structures that show GLP-1-binding [5] and/or express GLP-1R
mRNA [6]. Moreover, many of the aforementioned nuclei in the
visceral afferent pathway project to other GLP-1R-expressing struc-
tures involved in energy balance control (AP, ventral tegmental area,
arcuate nucleus, medial preoptic area) [see [5,6]]. Until recently, it
was often asserted that hypothalamic/forebrain processing is critical
for mediating the effects of peripheral GLP-1R stimulation, as well as
for central agonist delivery [8–10,81–83]. This perspective was
recently challenged using a complete supracollicular transection of
the neuraxis (i.e. chronic supracollicular decerebrate (CD) rat [84]) to
eliminate both the ascending forebrain projecting limb of the
ascending visceral afferent pathway and the descending projections
from the hypothalamus and basal forebrain to hindbrain, thereby
blocking forebrain–caudal brainstem communication. This strategy
was used to directly investigate the importance of hypothalamic/
forebrain and caudal brainstem processing in the mediation of
behavioral, sympathetic, and parasympathetic responses generated
by peripheral GLP-1R agonist treatment and, in separate experiments,
by hindbrain-delivered GLP-1R ligand, Exendin-4 [7]. The magnitude
and duration of responses observed in CD and control rats were
comparable. That is, peripheral administration of Exendin-4 sup-
pressed food intake and reduced gastric emptying and core body
temperature to a similar magnitude in both control and CD rats.
Hindbrain ventricular delivery of Exendin-4 also produced similar
intake, emptying, and thermal responses in CD and neurologically
intact controls. These data provide clear support for the hypothesis
that central processing restricted to the caudal brainstem is sufficient
for the generation of energy balance responses triggered by
exogenous peripheral GLP-1R stimulation and also by central GLP-
1R ligand delivered to the caudal brainstem. In addition, these data
argue for the need for further research aimed at elucidating the
physiological mechanism(s), mediating neuropeptides, and signaling
pathways by which caudal brainstem processing is contributing to
these coordinated behavioral and physiological effects.

Despite abundant research showing that feeding is suppressed by
exogenous activation of central GLP-1R expressing nuclei, and the recent
finding that caudal brainstem processing is sufficient to mediate the
intake suppressive effects of hindbrain-directed GLP-1R ligands,
whether or not endogenous hindbrain GLP-1R activity is required for
the normal control of energy balance and glycemia is a question that is
just beginning to be addressed [17]. To understand the physiological
role of endogenous CNS GLP-1 in food intake and body weight
regulation, previous research administered the GLP-1R antagonist
Exendin-(9–39) into the forebrain ventricles (i.e. 3rd or lateral icv)
[85,86]. While results indicate that this treatment can increase food
intake, the paradigms employedwere not physiological. For instance, in
one study sated rats were injected with a very large Exendin-(9–39)
dose (100 µg icv) [85],while in another, the antagonistwas appliedover
multiple days at the 100 µg (icv) dose in rats that have restricted access
to food (6 h/day) [86]. Furthermore, forebrain ventricular delivery of
large doses of Exendin-(9–39) leaves unresolved the nuclei-site-of-
action mediating the effects of the antagonist, as cerebrospinal fluid
flows in a caudal direction, allowing forebrain icv injectates to access
both forebrain and caudal brainstem nuclei. Thus, previous studies have
not sought to identify the contribution of endogenous hindbrainGLP-1R
activation to intake control.

Given the above mentioned unknowns and inconsistencies our
laboratory recently reexamined the relevance of endogenousCNSGLP-1
signaling to the control of food intake by focusing our attention in the
caudal brainstem [87]. The role of endogenous NTS GLP-1R activation to
intake control was the focus of these recent studies given that: 1) NTS
neurons are the endogenous source of CNS GLP-1; 2) caudal brainstem
processing is sufficient to mediate suppression of intake by hindbrain
GLP-1R activation [7]; 3) the NTS receives and integrates both vagal
afferent satiation and blood born energy status signals and issues output
commands essential to energy balance control [29,88–93]; and 4)
gastric distention activates GLP-1 containing neurons in the NTS [94].
Therefore, we examined a liquidmeal preload paradigm alongwith two
distinct sources of physiological within-meal GI satiation signals, gastric
distension and intraduodenal nutrients for their individual intake
suppressive contributions via hindbrainGLP-1R activation.We reported
[87] that the intake suppressive effects that follow ingestion of a preload
(9 ml of a nutritionally complete liquid meal, Ensure) require
endogenous hindbrain GLP-1R activity, as both 4th icv and direct NTS
delivery of Exendin-(9–39) increased food intake following ingestion of
this preload. This result supports the interpretation that GLP-1R
expressing NTS neurons contribute to the intake effect observed with
4th icv Exendin-(9–39) administration. Ingestion of the Ensure preload
gives rise to an array of satiation signals from the GI tract, including
stomach distension and intraduodenal nutrient contact, each of which
excite vagal afferents projecting to NTS neurons (for review see [20]).
Therefore, our laboratory subsequently tested whether endogenous
hindbrain GLP-1R activity mediates suppression of intake from gastric
distension or intraintestinal nutrient infusion [87]. Blockade of
hindbrain GLP-1R attenuated the suppression of intake by gastric
distension but did not affect the intake suppressive effect of intraduo-
denal nutrient infusion. Taken together, these findings indicate that
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endogenous NTS GLP-1R activity contributes to the endogenous control
of food intake by mediating the satiating effects of gastric distension.

The abovementioned findings raise a number of critical unanswered
questions. The first is to determine whether NTS GLP-1Rs that mediate
suppressionof intakebygastric distensionarepre- orpost-synaptic to the
vagal afferent signaling from distension of the stomach. Vagal afferent
fibers transportGLP-1Randother gut-peptide receptors to central (axon)
terminals that synapse on NTS neurons [39]. Thus, it is equally possible
that hindbrain GLP-1R mediation of gastric distension-induced vagal
afferent signaling may be mediated by pre-synaptic GLP-1Rs expressed
on central terminals of vagal afferents or may be mediated by post-
synaptic activation of NTS GLP-1R-expressing neurons. To date, we are
not aware of any experiments directly examining the role of GLP-1R on
central vagal afferent terminals in mediating GI afferent signaling.

7. Intracellular signaling pathway mediating suppression of intake
by hindbrain GLP-1R activation

The intake suppressive effects followinghindbrainGLP-1R activation
undoubtedly involve endemic intracellular signaling pathways that
alter intracellular Ca2+-influx and/or longer-term alterations in gene
transcription and protein synthesis that integrate various anorectic
signals in food intake control. In pancreatic β-cells, GLP-1R activation
leads to stimulation of adenylate cyclase, an increase in cAMP, and the
subsequent activation of protein kinase A (PKA) [95,96]. In neuronal
cells, increased intracellular cAMP can increase phosphorylation of the
p44/42 mitogen-activated protein kinase [p44/42 MAPK; also known
as: extracellular signal-regulated kinase (ERK)-1/2] [97,98], presumably
through a PKA-dependent pathway [83]. In fact, in pancreatic β-cells,
GLP-1 stimulates p44/42 MAPK phosphorylation through a mitogen-
activated protein kinase kinase (MEK)-dependent, but Raf/Ras-
independent pathway that requires PKA activation, an influx of
extracellularCa2+, andCAMkinase II activation [96]. Direct in vivoand in
vitro evaluation of these plausible intracellular mechanisms in mediat-
ing the intake suppressive effects of hindbrain GLP-1R activation
however, is still required.

In addition to the hypothesis that hindbrain GLP-1R activation leads
to an increase in p44/42 MAPK phosphorylation via a PKA-dependent
pathway, PKA activation is also known to inhibit calmodulin-dependent
protein kinase kinase (CAMKK) [99]. CAMKK, together with LKB1, are
considered the principal upstream kinases in mammalian tissue for the
fuel sensing enzyme, AMPK by phosphorylation of the AMPKα catalytic
subunit at Thr172 (for review see [100]). Thus, inhibition of CAMKK
activity leads to decreased AMPK activation [99]. AMPK has recently
been implicated in CNS control of energy balance [100–102], and its
activity is increased by the sequelae of food deprivation [100,101,103]
and by the energy reducing effects of insulin hypoglycemia or 2-DG
cytoglucopenia [104–106]. Additionally, Seo et al. [102] showed that an
increase in AMPK mRNA in the hypothalamus following food depriva-
tion was attenuated by GLP-1R activity. Recently the role of AMPK
activity in NTS neurons to energy balance control has also been
evaluated [107]. Similar to previous reports evaluating AMPK activity in
various hypothalamic nuclei [100,101], it was found that food
deprivation increases AMPK activity in NTS-enriched lysates. Also, as
previously observed in the hypothalamus [100,101], NTS AMPK activity
is inhibited by treatment with the adiposity hormone leptin, and by
refeeding following a period of food deprivation [107]. Finally, the
intake-reducing effects of hindbrain leptin delivery are mediated by
AMPK signaling, as pharmacological-induced increases in hindbrain
AMPK activity by 4th icv administration of AICAR, an AMP-mimicking
promoter of AMPK activity, reversed the suppression of food intake by
hindbrain leptin delivery. Together, these data support the notion that
reducedAMPK activity in the hindbrainmaymediate the suppression of
intake that follows GLP-1R activation.

The mammalian target of rapamycin (mTOR) is one of the down-
stream targets of AMPK (for review see [100]) and is implicated in food
intake regulation [108]. Activation of AMPK results in suppression of
mTOR signaling, thereby suppressing anabolic processes such as protein
synthesis and cAMP response element-binding protein (CREB)-medi-
ated nuclear transcription [109] and simultaneously promoting ATP-
producing catabolic processes. We hypothesize that hindbrain GLP-1R
activation increases PKA activity, which inhibits CAMKK, leading to
reduced AMPK activity, thereby promoting mTOR signaling. This
intracellular cascade together with a direct, PKA-mediated pathway,
would increase CREB-mediated nuclear transcription and protein
synthesis [109]. Simultaneously, if our working model is correct
(Fig. 1), PKA-mediated activation of p44/42 MAPK signaling also
promotes CREB-mediated transcriptional effects [110]. This would
indicate that caudal brainstemGLP-1R activation (presumably localized
to the NTS), engaging CREB-mediated transcriptional effects, could
potentially position NTS GLP-1R expressing neurons to integrate other
various anorexic signals (e.g. GI vagal satiation signals and circulating
energy status signals, such as leptin) into a coordinated longer-term
control of meal taking. Collectively, our working model (Fig. 1) is that
gastric distension-generatedvagal afferent signaling activateshindbrain
GLP-1R leading to a suppression in food intake. The intracellular
signaling pathways mediating this intake suppression occur through a
coordinated PKA-mediated suppression of AMPK activity and activation
of p44/42 MAPK/MEK signaling by promoting Ca+-dependent depolar-
ization of the GLP-1R expressing neurons and longer-term CREB-
mediated transcriptional effects, thus integrating various anorectic
signals involved in meal-to-meal food intake control. This working
hypothesis of the intracellular signaling pathways mediating hindbrain
GLP-1R activation requires further in vitro and in vivo analysis using a
range of behavioral and molecular techniques.

8. Neuroendocrine interactions with peripheral and central GLP-1
in control of food intake

Consistentwith the developing perspective that the neuroendocrine
controls of food intake (and body weigh regulation more broadly)
involve redundant and overlapping interactions between various
anorectic systems and regions of the peripheral and central nervous
system [29,111–118], both peripheral and central GLP-1-mediated
physiological and behavioral responses have been shown to involve
interactionswith various other anorectic systems. For example, Talsania
et al. [119] have shown that the intake inhibitory effects following
peripheral GLP-1R activation by Exendin-4 are synergistically enhanced
by co-administration of peptide YY(3–36NH2) (PYY(3–36)). Interest-
ingly, PYY(3–36) is co-secreted from L cells of the small intestine with
GLP-1(7–36) [22]. In a separate report [120], combined administration
of low doses of PYY(3–36) and GLP-1(7–36) produced an additive intake
suppressive effect in both humans and mice, as well as a significant
increase in Fos-LI within the arcuate nucleus of the hypothalamus,
whereas Fos-LI was absent following administration of either peptide
alone in the rodent models examined. Although the report does not
identify the neuronal pathways accounting for the enhanced neuronal
activation in the arcuatebyPYY(3–36) andGLP-1(7–36), theeffects likely
involve thevisceral vagal afferentpathway [10] asdiscussedpreviously in
this report. However, despite the enhanced suppressive effects on food
intake [119,120] and an indication of common homeostatic nuclei
activated [120], PYY(3–36) and GLP-1 appear to mediate intake via
independentmechanisms, with the intake inhibition by Exendin-4 being
mediated by sensory afferent GLP-1R expressing neurons, whereas the
intake suppression for PYY(3–36) is mediated by a Y2-receptor pathway
[119]. Further work is certainly required to determine the mechanisms
accounting for the enhanced intake suppressive effects produced by
combined GLP-1(7–36) and PYY(3–36) administration.

Finally, a separate interaction has been reported for both central and
peripheral GLP-1 systems with the adiposity hormone, leptin [18,121–
123]. Systemic administration of leptin increased hypothalamic GLP-1
peptide content and it has been proposed that central GLP-1 signaling in



Fig. 1.Proposed intracellular signaling pathways innucleus tractus solitarius (NTS) glucagon-like-peptide-1 receptor (GLP-1R)-expressingneuronsmediating suppression of intake byGLP-1R
activation. Gastric vagal afferent signaling increases endogenousNTS-derivedGLP-1 that acts on endemicNTSGLP-1R-expressing neurons to engage a cyclic AMP (cAMP)-dependent increase
in protein kinase A (PKA) activity. An increase in PKA activity drives simultaneous increases in the phosphorylation of p44/42 mitogen-activated protein kinase (MAPK) and decreases in
adenosine monophosphate protein kinase (AMPK) activity. An increase in PKA and p44/42 MAPK activity together with a decrease in AMPK activity drives an increase in cAMP response
element-binding (CREB)-mediated nuclear transcription andprotein synthesis, thus allowing theNTSGLP-1R-expressingneurons to potentially integrate various anorectic signals involved in
meal-to-meal food intake control. mTOR = mammalian target of rapamycin; CAMKK = calmodulin-dependent protein kinase kinase; CAMKII = calcium/calmodulin-dependent protein
kinase II; VGCC = voltage gated calcium channel; MEK =mitogen-activated protein kinase kinase.
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the CNSmediates, at least in part, the anorectic response to leptin [122].
It was recently reported [18] that a combination of an IP subthreshold
dose of Exendin-4 produced an intake inhibitory response when com-
binedwith either an IP or 3rd ICV subthreshold dose of leptin. However,
the CNS site of this interaction between leptin andGLP-1 signaling is not
yet clear. Leptin has been shown to reduce food intake by potentiating
the intake inhibitory effects of GI-derived satiation signals that require
NTSprocessing [111,112], suchasCCK [124–127], gastric distension [90]
and systemic GLP-1R activation [18]. Consistent with this perspective is
the fact that neurons of the NTS are the first CNS site that receive and
process GI-derived vagal afferent satiation signals, and that these
neurons also co-express and respond to activation of leptin receptors
[90,127]. Furthermore, NTS neurons are the only CNS nuclei known to
synthesize endogenous GLP-1 within the brain, and NTS neurons
themselves express the GLP-1R. Collectively these findings indicate that
the NTS is a plausible site mediating the anorectic interaction between
leptin and GLP-1 receptor signaling. However, this postulation has not
yet been validated. In addition it is unknown whether the processing
and integration of leptin andGLP-1 anorectic signalingwithin theNTS is
occurring in one population of NTS neurons or requires activation of
multiple phenotypes of NTS neurons and secondary integration.

9. Conclusions

The energy balance and glycemic responses generated by activation
of peripheral and/or central GLP-1R have great potential for the
treatment of obesity and T2DM. The work summarized in this review
has highlighted the fact that the GLP-1 sites of action for these GLP-1R
mediated responses are widely distributed throughout the body. For the
peripheral GLP-1 system, evidence suggests a potential role for GLP-1
acting in: 1) a paracrine-like fashion on GLP-1R expressed on peripheral
terminals of vagal afferent fibers that innervate the GI tract, adjacent to
the site ofGLP-1 release fromthe intestinal “L” cells, and2)anendocrine-
like fashion on GLP-1R expressed within the hepatoportal region.
Furthermore, accumulating evidence supports thenotion that peripheral
endogenous GLP-1, as well as select exogenous GLP-1R analogues (e.g.
Exenatide) activate GLP-1R within the periphery on vagal and splenic
fibers which subsequently engage CNS processing, but do not elicit their
behavioral and physiological responses by acting directly within the
brain. Yet, similar, and in some cases distinct energy balance and
glycemic responses are certainly mediated by central GLP-1R activation,
specifically within the caudal brainstem. Moreover, these CNS caudal
brainstem GLP-1-mediated responses are physiologically required for
the normal control of food intake. Thus, this review has accentuated the
critical role of the NTS in mediating the intake-reducing effects that
followactivation of bothperipheral and central GLP-1Rs. Future research
examining the NTS-specific processing of central and peripheral GLP-1
systems may prove useful in the development of more effective
pharmacotherapies aimed at treating obesity and T2DM.
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