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Abstract

Arguably the most fundamental physiological systems for all eukaryotic life
are those governing energy balance. Without sufficient energy, an individual
is unable to survive and reproduce. Thus, an ever-growing appreciation is
that mammalian physiology developed a redundant set of neuroendocrine
signals that regulate energy intake and expenditure, which maintains suffi-
cient circulating energy, predominantly in the form of glucose, to ensure
that energy needs are met throughout the body. This orchestrated control
requires cross talk between the gastrointestinal tract, which senses the in-
coming meal; the pancreas, which produces glycemic counterregulatory hor-
mones; and the brain, which controls autonomic and behavioral processes
regulating energy balance. Therefore, this review highlights the physiolog-
ical, pharmacological, and pathophysiological effects of the incretin hor-
mones glucagon-like peptide-1 and gastric inhibitory polypeptide, as well as
the pancreatic hormone amylin, on energy balance and glycemic control.
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INTRODUCTION

As type II diabetes mellitus (T2DM) and obesity rates continue to reach epidemic proportions
(28, 51, 176), driving health and economic costs higher (49, 50), the need to find safe, effective,
and economically achievable therapies for the treatment of these diseases is ever increasing. At the
most fundamental level, T2DM is a disease characterized by a derangement in insulin receptor
signaling and the resulting metabolic consequences of chronic hyperglycemia, whereas obesity
represents the long-term physiological consequence of chronic overconsumption of energy in
comparison to energy expended. Despite our ever-growing understanding of the environmental,
anatomical, physiological, molecular, neuronal, and behavioral mechanisms that contribute to
the etiology and pathophysiology of obesity/T2DM, it is clear that we have limited therapeutic
options for either disease, and the management of T2DM requires lifelong treatment with
several classes of pharmaceuticals (44, 162). Thus, more progress is required to identify novel
physiologically relevant targets to (a) alleviate the derangements in insulin receptor signaling for
the treatment of T2DM and (b) reduce energy intake and/or increase energy expenditure for the
treatment of obesity. For these reasons, attention has been devoted to the investigation of incretin
hormones such as glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP), as
well as noninsulin pancreatic β-cell-derived hormones such as amylin for the treatment of T2DM
and obesity, as pharmacological manipulation of these neuroendocrine systems offers promising
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Figure 1
The mechanisms by which glucagon-like peptide-1 (GLP-1), gastric inhibitory polypeptide (GIP), and
amylin regulate food intake and blood glucose involve complex, overlapping, and redundant endocrine and
neuronal pathways. Solid lines indicate a direct mode of action, whereas dashed lines indicate control
through an indirect mechanism. Lines with dual inhibition and arrow signs indicate evidence for both
directions of effects. (Supporting literature for the pathways illustrated here that is not highlighted elsewhere
in this review can be found here: 1, 4, 5, 13, 42, 52, 56, 160, 198, 199.)

therapeutic potential for both diseases. This review therefore focuses on the physiological
and pathophysiological neuroendocrine mechanisms mediating the glycemic- and food intake–
suppressive effects of amylin, GLP-1, and GIP (see Figure 1 for an illustrative summary).
Importantly, this review also highlights gaps in knowledge that may offer potential advances for
improved therapeutics targeting each of these systems for the treatment of T2DM and obesity.

INCRETIN- AND AMYLIN-MEDIATED SIGNALING IN BLOOD
GLUCOSE REGULATION

An incretin factor is a hormone that is secreted from the intestine (also termed insulinotropic
gut peptide) in response to nutrient ingestion and elicits the secretion of insulin from the pan-
creatic β-cells to lower blood glucose levels postprandially (for reviews, see 8, 73). Accordingly,
oral glucose administration will lead to a greater increase in plasma insulin levels when compared
with the same amount of glucose given intravenously (47, 113). Thus, the incretin effect refers
to the increase in the amount of insulin secreted from pancreatic β-cells following oral versus
intravenous glucose administration, and it is estimated to account for approximately 50% of the
total insulin secreted after oral glucose administration. The incretin effect is largely mediated by
the neuroendocrine actions of two insulinotropic gut peptides, GLP-1 and GIP, that are secreted
from enteroendocrine “L” and “K” cells, respectively, of the intestine following nutrient entry
into the gastrointestinal (GI) tract (for reviews, see 66, 73). Interestingly, the physiological and
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pharmacological effects mediated by GIP and GLP-1 ligands are not restricted to glycemic regu-
lation, nor are they entirely due to direct activation of receptors expressed on pancreatic β-cells.
Instead, the relevant GLP-1 receptor (GLP-1R) and GIP receptor (GIPR) populations mediat-
ing the physiological responses of these hormones are still being heavily explored. In the case of
GLP-1, the biological processes regulated by this neuroendocrine system are abundant and in-
clude blood glucose regulation, regulation of gastric emptying, visceral stress, and cardiovascular
and thermogenic effects. Importantly, GLP-1 also plays a critical role in the control of food intake
and energy balance. Sections within this review provide a brief overview of GIP and GLP-1
physiology with special attention devoted to the endocrine, neuroanatomical, and behavioral
mechanisms mediating the physiological effects of these incretin factors.

The pancreatic β-cells also produce amylin [a.k.a. islet amyloid polypeptide (IAPP)], a
37-amino-acid peptide that is cosecreted with insulin and also plays a role in the regulation of blood
glucose and other physiological functions (103, 136, 156). Amylin’s secretion is also modulated
in part by the presence of nutrients in the GI tract; however, unlike incretin hormones, amylin’s
ability to modulate glycemic control is not thought to be a result of potentiated insulin release.
Rather, the prevailing view is that amylin receptor activation reduces blood glucose by delaying
gastric emptying, suppressing food intake, and inhibiting meal-related glucagon secretion (for re-
views, see 104, 154, 155). Like the incretin hormones, these effects by amylin require distributed
sites of action that necessitate activation of amylin receptors in the central nervous system (CNS).
Recent advances in amylin physiology in relation to food intake and energy balance are discussed
in sections below.

SYSTEMIC GLUCAGON-LIKE PEPTIDE-1 REGULATION OF BLOOD
GLUCOSE AND ENERGY INTAKE

Vagal-Dependent Mediation of Glycemic Responses by Systemic GLP-1

Within the periphery, there are three distinct populations of GLP-1Rs relevant to glycemic con-
trol; these populations include GLP-1R expressed on (a) pancreatic β-cells, (b) vagal afferent fibers
innervating the GI tract, and (c) vagal afferent fibers innervating the hepatoportal bed (for reviews,
see 66, 73). The amount of endogenous postprandial GLP-1 released from intestinal L-cells in
humans is correlated with the size of the meal. This is an important concept when considering
the relevant GLP-1R population(s) within the periphery that may respond to secreted GLP-1
to control for blood glucose utilization under normal physiological conditions as well as during
pathophysiological conditions resulting from gastric bypass and/or treatment with GLP-1-based
pharmaceuticals for management of T2DM. Overwhelming evidence has shown that the vast
majority of endogenously secreted GLP-1 is rapidly degraded by endopeptidases, such as the
dipeptidyl peptidase IV (DPP-IV) enzyme, resulting in transient circulating levels of GLP-1 (for
a review, see 73). Thus, under normal physiological conditions, paracrine-like signaling by GLP-1
plays a primary role in mediating intestinally derived GLP-1 effects (66, 67, 73). In other words,
evidence supports that GLP-1 secreted from intestinal L-cells acts locally on adjacent GLP-1R
expressed on the peripheral terminals of vagal afferent fibers innervating the intestine to promote
for insulin secretion and subsequent glycemic control via a vago-vagal reflex (153) that stimulates
the β-cells to secrete insulin (for a review, see 66).

Direct evidence for the GLP-1 paracrine mode of action comes from rodent studies performing
selective surgical ablation of the common hepatic branch (CHB) of the vagus nerve, the principal
hepatoportal-innervating branch of the vagus (194). Rats with ablated CHB afferents continue
to retain similar glycemic- and food intake–suppressive responses to endogenously produced or
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exogenously administered GLP-1, respectively, whereas rats with complete subdiaphragmatic
vagal deafferentation (eliminating all vagal afferents) fail to show a GLP-1R-mediated incretin
response and had a blunted suppression in glucose intake following exogenous systemic GLP-1
administration (194). Further support for an entero-vagal site of action by GLP-1 comes from
the finding that inhibition of DPP-IV, specifically within the intestine and not in the general
circulation, results in elevation of intestinal GLP-1 that can drive vagal afferent excitation and
insulin secretion (191). Thus, the conservative conclusion drawn from these findings is that vagal
afferent communication is needed to mediate the glycemic- and food-intake-inhibitory effects of
systemic GLP-1 and is not dependent on the CHB but rather on neuronal signaling by the celiac
and/or gastric vagal branches that innervate the GI tract.

Direct Activation of GLP-1R Expressed on Pancreatic β-Cells

The notion that paracrine-like signaling by intestinally derived GLP-1 is the primary physio-
logical mode of action does not discount the potential secondary role of an endocrine-mediated
mechanism that involves GLP-1 entering into circulation and having action on GLP-1R expressed
either in the hepatoportal bed (97, 133, 134, 190) or directly on β-cells (100). Here, we discuss
evidence for glycemic responses mediated by direct activation of GLP-1R expressed on pancreatic
β-cells, as this effect undoubtedly occurs with pharmacological treatments targeting the GLP-1
system and/or with various gastric bypass surgeries (both discussed in further detail below).

Activation of GLP-1R expressed on pancreatic β-cells can result in coupling to Gαs, Gαq,
Gαi, and Gαo (8, 63, 125), stimulation of adenylate cyclase, elevated cyclic adenosine monophos-
phate (cAMP), and subsequent activation of protein kinase A (PKA) and C (PKC) as well as
phospatidylinositol-3 kinase (PI3K) (57, 138). Interestingly, whereas the increase in adenylate cy-
clase and cAMP following β-cell GLP-1R activation is required for insulin secretion, activation
of PKA does not appear to be a required component for this effect, although when activated, PKA
signaling can potentiate insulin secretion (for a review, see 174). The GLP-1-induced increase
in cAMP augments glucose-stimulated insulin secretion by increasing the immediate fusion of
insulin granules in the β-cell to the plasma membrane and ensuing insulin exocytosis. This pro-
cess is mediated by a PKA-dependent, but also a PKA-independent, pathway that involves Epac
(exchange protein activated by cAMP) (85, 174). In addition to promoting insulin exocytosis from
the β-cell, intracellular signaling cascades following GLP-1R activation stimulate insulin gene
transcription and protein synthesis (43, 48, 53), putatively providing for a longer temporal control
of postprandial insulin signaling. Finally, exciting complementary in vivo and in vitro evidence
has pointed to a functional role for GLP-1R signaling in promoting β-cell proliferation and neo-
genesis (8, 118). Thus, continued exploration of the direct action of GLP-1 on β-cells is highly
warranted as we continue to develop improved GLP-1-based pharmacotherapies for T2DM.

CENTRAL GLUCAGON-LIKE PEPTIDE-1 REGULATION OF BLOOD
GLUCOSE AND ENERGY BALANCE

CNS GLP-1 in Control of Glycemia

The CNS GLP-1 system plays a critical role in regulating glucose utilization in peripheral
tissues (12, 64, 97) and is a potent stimulator of insulin secretion (97). Glucose intolerance has
been reported in rats with chronic forebrain intracerebroventricular (icv) administration of the
GLP-1R antagonist exendin-(9-39) or with virally mediated knockdown of the GLP-1 precursor
preproglucagon (PPG) in the nucleus tractus solitarius (NTS) (12). Moreover, acute forebrain icv
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delivery of the GLP-1R antagonist exendin-(9-39) attenuates the utilization of glucose and in-
creases glycogen synthesis in skeletal muscle (73). These findings indicate an endogenous role for
the CNS GLP-1 system in glycemic control, yet the specific CNS GLP-1R-expressing nuclei and
mechanisms mediating central GLP-1’s effects on glycemic regulation remain poorly understood.

The CNS GLP-1R-mediated effects on blood glucose regulation presumably involve modu-
lation of the hypothalamo-pituitary-adrenocortical (HPA) axis (117) and/or autonomic pathways
from the brain to the skeletal muscle and pancreas. Examples of similar hypothalamic and brain
stem glucose-sensing pathways that modulate pancreatic insulin secretion and peripheral glu-
cose utilization have been reviewed extensively elsewhere (185, 186, 196). GLP-1R activation can
have divergent behavioral and physiological effects depending on the site of activation. Within
the hypothalamus, activation of GLP-1R in the arcuate nucleus (ARH) suppresses hepatic glucose
production and increases β-cell insulin secretion; however, no discernible effects on food intake
have been reported (164). Conversely, activation of GLP-1R localized within the paraventricular
nucleus of the hypothalamus (PVH) significantly reduces food intake but does not alter glucose ho-
meostasis (164). The glycemic effects of hypothalamic GLP-1 are not limited to the ARH, as GLP-
1R activation in the ventral medial hypothalamic nucleus (VMH) also modulates blood glucose (8).

Beyond the collective body of research examining hypothalamic GLP-1R-mediated effects on
glycemia, however, there has been little investigation of nonhypothalamic GLP-1R-expressing
nuclei in control of blood glucose. This is surprising considering that neural processing by the
brain stem is sufficient to mediate the suppressive effects of GLP-1 on food intake and gastric
emptying as well as many of the energy expenditure parameters of GLP-1 (e.g., core temperature,
heart rate) (69). Moreover, given the well-documented role of parasympathetic-mediated pathways
that involves dorsal motor nucleus vagal (DMV) efferent signaling in control of glucose tolerance
(185, 186, 196), that PPG-expressing neurons in the CNS are located almost exclusively in the
NTS, and that GLP-1 signaling in the DMV excites pancreatic-projecting vagal motor neurons
(192, 193), it stands to reason that hindbrain GLP-1R signaling may modulate blood glucose
concentrations.

CNS GLP-1 in Control of Energy Balance

Current US Food and Drug Administration (FDA)-approved GLP-1-based pharmacotherapies
for T2DM treatment are either orally taken (DPP-IV inhibitors) or systemically injected (GLP-
1R agonists), and undoubtedly both classes of drugs result in increased activation of GLP-1R
expressed on the terminals of vagal afferent fibers innervating the GI tract and supporting organs
of the alimentary canal (for reviews, see 25, 66, 73). The role of vagal afferent signaling in mediating
the food intake–suppressive effects of intestinally derived GLP-1 has also been extensively reviewed
(59, 66, 73). Importantly, activation of central GLP-1Rs results in many of the same behavioral
and physiological responses that are observed following peripheral GLP-1R ligand administration
(e.g., inhibition of feeding, increased insulin secretion, reduced gastric emptying) (69, 96, 97,
166). When systemically administered, the GLP-1R agonists liraglutide and exendin-4 sufficiently
penetrate the blood-brain barrier (BBB) and gain access to the brain in amounts sufficient to
drive a physiological/behavioral response (80, 83), making it difficult to disentangle the effects
originating in the periphery from those effects mediated by direct CNS activation. Instead, the
best evidence supporting the relevance of the CNS GLP-1 system in energy balance regulation are
reports showing an endogenous role for the CNS GLP-1 system by (a) chronic blockade of CNS
GLP-1R by forebrain administration of the selective antagonist exendin-(9-39), which results in
increased food intake and body weight (12, 116, 189), and (b) targeted viral knockdown of central
GLP-1-producing PPG neurons, which results in hyperphagia and elevated weight gain (12).
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The current challenge for the field is to characterize the autonomic, endocrine, and behavioral
responses mediated by individual GLP-1R-expressing nuclei. Indeed, although many CNS nuclei
relevant for energy balance express GLP-1R, to date only a select few have been demonstrated to
be physiologically required for the normal control of feeding (2, 41, 65, 166). Therefore, we first
highlight recent advances in our understanding of the brain stem, hypothalamic, and mesolimbic
GLP-1R-mediated effects controlling for energy balance and subsequently focus on potential areas
of new research, with an eye toward hippocampal cognitive processes that involve GLP-1 signaling.

GLP-1 and hypothalamic/brain stem signaling. As briefly discussed above, examinations of
hypothalamic GLP-1-mediated energy balance effects have been somewhat surprising. Despite the
fact that GLP-1Rs are expressed on ARH proopiomelanocortin neurons, which are required for
the regulation of energy balance (for a review, see 34), activation of ARH GLP-1R has no effect
on food intake (164). Conversely, pharmacological activation of GLP-1R in the PVH, lateral
nucleus of the hypothalamus (LH), dorsal medial nucleus of the hypothalamus (DMH), or VMH
suppresses food intake (114, 115, 166). Among these hypothalamic structures, however, to date
only the LH GLP-1R populations have been shown to be physiologically relevant for the control
of food intake, as blockade of LH GLP-1R produces a short-term increase in food intake (166).
Further studies are therefore needed to determine whether blockade of GLP-1R in the PVH,
DMH, and VMH can lead to an increase in food intake in order to establish whether endogenous
GLP-1 signaling in each of these sites is physiologically relevant for food intake regulation. Thus,
although the hypothalamus is innervated abundantly by GLP-1 axonal projections from the NTS
(101, 102, 151, 152), hypothalamic processing alone does not seem sufficient to mediate all of
the feeding effects by the CNS GLP-1 system. Thus, a much broader exploration of GLP-1
neuroanatomy is needed with regard to energy balance control.

Despite the importance of forebrain GLP-1R signaling for food intake regulation (2, 38, 41,
96, 102, 115), hindbrain neural processing is sufficient to mediate the food intake–suppressive
effects of peripherally or centrally administered GLP-1R agonists (69). Within the hindbrain,
GLP-1R signaling in the medial NTS (mNTS) is physiologically relevant for the normal control
of food intake (65). Furthermore, pharmacological activation of mNTS GLP-1R produces a
robust suppression of food intake that can be sustained for over 24 hours (68, 200). Previous
findings indicate that NTS GLP-1R-mediated suppression of food intake requires a cAMP/PKA-
dependent activation of p44/42-mitogen-activated protein kinase and simultaneous suppression of
adenosine monophosphate-activated protein kinase (AMPK) (68). Because the intake-suppressive
effects of hindbrain GLP-1R activation are so robust and long lasting, additional cAMP/PKA-
dependent intracellular signaling pathways are undoubtedly required to mediate the suppression
of intake by GLP-1R activation. Indeed, hindbrain GLP-1R-mediated suppression of food intake
also involves a PI3K-PIP3-dependent translocation of Akt to the plasma membrane and subsequent
suppression of Akt phosphorylation (159). Together, these intracellular signaling pathways interact
to control for the feeding effects produced by mNTS GLP-1R activation, as a disruption of any one
of these signaling pathways is sufficient to attenuate the food intake–suppressive effects produced
by hindbrain GLP-1R activation. It is highly likely that these intracellular signals act together
with additional downstream intracellular targets to modify transcriptional control, theoretically
making an NTS GLP-1R-expressing neuron more sensitive to other anorectic signals processed
within the NTS (for a review, see 60).

GLP-1 and mesolimbic reward signaling. Drawing upon the appreciation that the excessive
food intake that contributes to human obesity is not driven by metabolic need, a number of
laboratories have made major advances in our understanding of the role that GLP-1 signaling in
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the nuclei of the mesolimbic reward system (MRS) has in energy balance control (2, 38, 41). This
growing body of literature builds on the field’s collective understanding of gustatory signaling
from the oral cavity (primarily taste) and its synaptic connections to the MRS (135). Indeed,
gustatory projections to limbic structures are responsible for engaging the nucleus accumbens
(NAc) to modulate dopamine signaling (135). Although these discoveries inform our thinking
about feed-forward neural circuitry that promotes feeding, the contributions of antagonizing
signals communicated to the MRS that accumulate as consumption of a meal progresses remain an
extremely hot topic for investigation. The hypothesis that NTS GLP-1-producing PPG neurons
function as a hub to connect within-meal GI-derived satiation signals with the hedonic/reward
circuitry of the MRS provides a plausible mechanism to explain why the rewarding value of food
is decreased in a sated state (6, 11, 26, 171, 172). To this end, recent complementary reports show
that NTS PPG neurons project directly to the ventral tegmental area (VTA) (2) and NAc core
and shell (2, 41). The connections to the VTA and NAc core were shown to be physiologically
relevant for the control of palatable food intake, as GLP-1R blockade in either nucleus increased
palatable high-fat diet intake (2). Given that dopaminergic projections from VTA to NAc are well
established and dopamine signaling in the MRS modulates food intake (92, 130), it is plausible that
the reduction in food intake via GLP-1R activation in the VTA and NAc involves modulation of
dopamine signaling and/or synthesis via presynaptic and/or postsynaptic mechanisms. In addition
to dopamine, it has been proposed that opioid, γ-aminobutyric acid, and glutamate signaling in the
MRS are also involved in regulating feeding (7, 93, 108, 109, 121, 130). At least for the VTA, recent
behavioral and electrophysiological evidence suggests that GLP-1Rs are expressed on presynaptic
glutamatergic axon terminals whose cell bodies reside in other nuclei [e.g., NTS, prefrontal cortex,
central nucleus of the amygdala (CeA)] (119). Activation of the VTA GLP-1R reduced the intake
of palatable high-fat diet primarily by reducing meal size, with minimal and inconsistent effects
on meal frequency (119). The anorectic effects of intra-VTA GLP-1R activation were shown to
be mediated in part by glutamatergic AMPA/kainate, but not N-methyl-D-aspartate (NMDA),
receptor signaling (119).

Beyond modulation of nutrient intake, emerging evidence suggests that satiation hormones,
including GLP-1, may also regulate the reinforcing effects of alcohol intake and drugs of abuse
(for a review, see 181). Thus, the GLP-1 system may serve as a novel target for drug discovery
programs aimed at developing pharmacotherapies for drug addiction (91). Given that the rein-
forcing effects of natural rewards (like palatable food) and drugs of abuse are regulated, in part, by
the MRS (39, 130, 143, 167), it is possible that CNS GLP-1 signaling may also regulate drug tak-
ing and seeking. Recent studies demonstrate that peripheral administration of a GLP-1R agonist
attenuates psychostimulant-induced conditioned place preference (CPP) and that these effects are
associated with reduced extracellular dopamine levels in the NAc (46, 58). Unfortunately, it is
not clear from these studies whether the effects of a peripherally administered GLP-1R agonist
on psychostimulant-induced behavioral responses are due to direct stimulation of GLP-1R in the
brain or occur through an indirect vagally mediated mechanism that influences the MRS. Per-
haps more importantly, because nausea and malaise-like symptoms are common adverse effects
associated with high doses of peripherally administered GLP-1R agonists (83) (such as the high
doses used in the aforementioned CPP studies), it is impossible to disentangle reduced expression
of CPP from place avoidance. Thus, further research is desperately needed to determine whether
direct GLP-1 action in the MRS can modulate drug taking and seeking and do so in the absence
of nausea/malaise (discussed in further detail below).

GLP-1 and hippocampal signaling. In addition to nuclei traditionally associated with home-
ostatic (e.g., ventromedial hypothalamus, caudal brain stem) and rewarding (e.g., nucleus
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accumbens, ventral tegmental area) aspects of feeding behavior, GLP-1Rs are also expressed in the
hippocampus, a telencephalic structure linked with learning and memory function (117). In a se-
ries of papers, Greig and colleagues demonstrated that GLP-1 has neuroprotective effects against
excitotoxic damage in hippocampal neurons (139) as well as against amyloid-beta peptide-induced
neuronal death (140). Shortly thereafter, a pivotal paper from During et al. (45) demonstrated
the functional relevance of hippocampal GLP-1R in learning and memory function. Pharmaco-
logical activation of CNS GLP-1R (via icv GLP-1 infusion) improved learning performance in
a spatial learning test that is sensitive to hippocampal damage. Further evidence that hippocam-
pal GLP-1R signaling improves learning and memory was provided by During and colleagues’
(45) results showing that GLP-1R-deficient mice were impaired in a hippocampal-dependent
contextual learning problem and that viral vector–mediated upregulation of GLP-1R gene ex-
pression targeted to the hippocampus markedly enhanced spatial learning performance relative to
controls.

Having established a role for GLP-1 signaling in hippocampal-dependent learning, the chal-
lenge for the field is to elucidate the neurophysiological mechanisms through which GLP-1 exerts
its memory promoting and neurotrophic effects on hippocampal neurons. GLP-1 has been shown
to improve impairments in hippocampal synaptic plasticity (NMDA-mediated long-term poten-
tiation) induced by pharmacological (195) or genetic (107) rodent models of Alzheimer’s disease,
as well as synaptic plasticity deficits induced by streptozotocin-induced diabetes (75). Given that
the FDA-approved long-acting GLP-1R analogs exendin-4 and liraglutide are able to sufficiently
penetrate the BBB and act on CNS receptors (80, 86, 110), these neurotrophic properties may
have clinical relevance for Alzheimer’s and other dementias. In fact, chronic exendin-4 treat-
ment in rodents restores learning and memory deficits induced by high-fat-diet feeding (55) or
by intrahippocampal lipopolysaccharide administration (74). Similar findings by Holscher and
colleagues have demonstrated that chronic liraglutide treatment prevented memory impairments
induced by a transgenic mouse model of Alzheimer’s (112) and by diet-induced obesity (111).
Thus, these GLP-1 analogs may prove to be clinically useful for dementia and other types of
cognitive dysfunction that target the integrity of the hippocampus.

Given the robust influence of learning and memory processing on feeding behavior (for reviews,
see 33, 72, 79, 88, 187), it is likely that the memory-promoting effects of hippocampal GLP-1R
signaling are directly linked with the anorectic CNS actions of GLP-1. Neural processing in the
hippocampus links contextual information with previous experience to guide behavior appropri-
ately (16, 78, 90). This can influence feeding behavior that is based on external contextual cues (e.g.,
optimal foraging locations, feeding inhibition in predator environment) as well as by integrating
internal contextual cues with previous experience related to obtaining and/or consuming food.
For example, rodents with selective hippocampal lesions cannot learn or retain a discrimination
task in which different magnitudes of food deprivation serve as discriminative stimuli signaling
the presence or absence of a palatable food reward (sucrose) (32). The internal context may be
represented in the hippocampus via neuroendocrine signaling by GLP-1 and other peripherally
derived hormonal signals whose circulating levels vary with short- and long-term energy status.
Indeed, in addition to GLP-1R, the hippocampus is densely populated with receptors for insulin,
leptin, cholecystokinin, and ghrelin (31, 71, 173, 202). A series of recent studies shows that neu-
ronal processing in the ventral subregion of the hippocampus modulates appetitive behavior and
food intake via signaling by both anorectic and orexigenic neuroendocrine ligands. The adipose
tissue–derived hormone leptin acts on receptors in the ventral subregion of the hippocampus to
suppress food intake and motivated responding for palatable food (runway performance for su-
crose) (82). In contrast, ghrelin receptor signaling in this region potently increases food intake,
operant responding for sucrose, and meal initiation in response to environmental cues associated

www.annualreviews.org • Incretins and Amylin 3.9

Changes may still occur before final publication online and in print

A
nn

u.
 R

ev
. N

ut
r.

 2
01

4.
34

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f 
So

ut
he

rn
 C

al
if

or
ni

a 
(U

SC
) 

on
 0

4/
11

/1
4.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



NU34CH03-Hayes ARI 27 March 2014 17:35

with food reward (81). Although this hypothesis has not been directly tested, it may be the case that
hippocampal GLP-1R signaling influences food seeking and consumption by promoting mem-
ory processes that link the internal energy status with previous experience to influence feeding
behavior.

GASTRIC INHIBITORY POLYPEPTIDE REGULATION OF BLOOD
GLUCOSE AND ENERGY BALANCE

Like GLP-1, GIP stimulates glucose-dependent insulin secretion and insulin transcrip-
tion/translation as well as β-cell growth and preservation of β-cell survival under normal physio-
logical conditions (for a review, see 162). However, unlike GLP-1, few energy balance effects are
produced by GIP treatment alone, and much of the beneficial glycemic effect of GIP signaling is
impaired in states of chronic hyperglycemia (77). The latter fact has greatly precluded any signifi-
cant pharmacological advancement for the GIP system as a primary treatment strategy for T2DM.
It is also worth noting that there are many conflicting reports showing opposing metabolic ben-
efits arising from activation or inhibition of GIP receptors. For example, GIP administration in
hyperglycemic patients with T2DM promotes glucagon secretion and worsens glucose tolerance
(29), an effect contrary to GIP-mediated effects in euglycemic nondiabetic conditions (162). Yet,
in mouse models, genetic deletion of the GIP receptor improves glucose tolerance and insulin
sensitivity (for a review, see 25). Thus, although emerging combination therapies involving GIP
signaling are now being pursued as a potential treatment strategy for disruptions in glycemia
and energy balance (162), the cautious view at this moment would be one that supports exten-
sive further preclinical and clinical trials for GIP-based pharmacotherapy before considering any
GIP-based compound as a viable treatment option for T2DM and/or obesity.

AMYLIN REGULATION OF BLOOD GLUCOSE AND ENERGY INTAKE

The blood glucose–lowering actions of amylin receptor agonists (i.e., pramlintide, salmon calci-
tonin) are among the most widely studied of amylin’s multiple physiological functions (for reviews,
see 103, 106, 155, 156). Indeed, the amylin analog, pramlintide, is FDA-approved for the treat-
ment of both T1DM and T2DM. In addition to the blood glucose regulatory effects, amylin
signaling also suppresses food intake and body weight. Accordingly, the amylin system is a po-
tentially attractive target for the pharmacological treatment of obesity because of its anorectic
actions. The intake-inhibitory effects of amylin receptor agonists are mediated by direct action
in the brain following stimulation of amylin receptors (103, 106, 155, 156). Amylin receptors are
fairly unique in that they contain one of two splice variants of the calcitonin receptor (CTa/CTb;
a G-protein coupled receptor) heterodimerized with one of the receptor activity-modifying pro-
teins (RAMP1, RAMP2, or RAMP3) (for reviews, see 147, 154). Despite the fact that amylin
readily crosses the BBB and gains access to much if not all of the CNS (9, 10), where amylin
receptors are widely distributed across the neuraxis (14, 15, 70, 175, 182), investigations of CNS
nuclei and neuronal mechanisms mediating the anorectic effects of amylin signaling have been
surprisingly restricted. A more comprehensive analysis of the mechanisms through which CNS
amylin signaling reduces food intake is particularly warranted given recent interest in combining
amylin with leptin receptor agonism, antagonists of the opioid system (e.g., naltrexone), and/or
inhibitors of dopamine/norepinephrine reuptake (e.g., bupropion) for obesity treatment (27, 30,
103, 146, 157, 188).

The anorectic and body weight–suppressive effects of amylin receptor activation are mediated
by a distributed network across the CNS that, to date, is known to involve processing by the area
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postrema (AP) (105, 123, 149), hypothalamus (145, 157), and VTA (120). Amylin action in the
AP and VTA is physiologically relevant for the control of feeding and is also potentially clinically
relevant because amylin receptor blockade in either site attenuates the intake-suppressive effects
of systemically injected amylin analogs (104, 120, 123, 150). From a therapeutic standpoint for
future pharmacological treatment of obesity and potentially eating disorders (i.e., binge eating),
the finding that blockade of amylin receptors in the VTA attenuates the intake-suppressive effects
of a peripherally administered amylin analog suggests the potential for peripheral amylin analogs
to affect VTA neural processing in humans. Given the critical role of the VTA in reward and
motivational aspects of food intake control via dopaminergic inputs to the NAc (87, 130, 169), it
is plausible that amylin action in the VTA controls for food intake by modulating the rewarding/
motivational value of palatable food (120) as well as the ability of environmental food cues to trigger
excessive food seeking and consumption. Such hypotheses require extensive further testing.

PATHOPHYSIOLOGICAL EFFECTS OF AMYLIN- AND
GLUCAGON-LIKE PEPTIDE-1-BASED PHARMACOTHERAPIES

As highlighted above, tremendous opportunities exist for further pharmaceutical advancements
in GLP-1- and amylin-based treatments for diabetes and obesity. Among the most notable goals
of future GLP-1 and amylin pharmacotherapies should be the development of receptor ligands
that exert enhanced suppression of blood glucose, food intake, and body weight gain but are able
to achieve each of these effects with reduced incidence of adverse events. Although it is true that
FDA-approved GLP-1R (e.g., liraglutide and exenatide) and amylin receptor (e.g., pramlintide)
ligands present negligible risks of life-threatening adverse events (e.g., cardiac abnormalities,
depression, suicide ideation, renal failure) (19, 24, 124, 144, 161), neither class of drug is completely
devoid of side effects that negatively impact quality of life and produce treatment attrition. Most
notably, ∼20–50% of T2DM patients prescribed GLP-1 medication experience nausea and/or
vomiting, leading to discontinuation of drug treatment in ∼6–10% and reduced dose tolerance
in an additional ∼15% (17, 23, 37, 76, 89). Similarly, patients prescribed the amylin analog
pramlintide are conservatively estimated to be 1.8 times more likely to experience nausea compared
to those receiving placebo treatment (for a meta-review, see 179).

Although the adverse effects of nausea and emesis (i.e., retching and vomiting) are reported
for both GLP-1- and amylin-based pharmacotherapies, it is surprising how uninvestigated these
phenomena are, as such staggering statistics limit the widespread use, efficacy, and potential future
FDA approval of GLP-1R and amylin receptor ligands for obesity treatment. Perhaps a concern
of researchers and pharmaceutical companies is that a portion of the food intake reduction pro-
duced by amylin and GLP-1R ligands is secondary to the induction of nausea; this concept is
worthy of consideration but is poorly understood. The lack of knowledge is partially attributable
to the fact that unlike emesis, the subjective experience of nausea cannot be overtly measured in
humans, which is underscored by the fact that available patient self-reporting tools for nausea
have poor validity and reliability (21, 197). Another limitation related to the investigation of eme-
sis/nausea/malaise by GLP-1R and amylin receptor ligands is that the vast majority of preclinical
experimental investigations of these drugs have been conducted in rodents, which lack the anatomy
and physiology to retch and vomit (for a review, see 3). Importantly though, the absence of emesis
by rodents does not indicate an absence of nausea/malaise; a similar scenario is observed in hu-
mans who experience nausea but do not vomit. Any attempt to quantify malaise by GLP-1 and
amylin pharmacology in the rodent must be done with the appreciation that the analyses are in-
direct semi-quantifiable measures of a subjective feeling and thus take advantage of alternative
models: (a) taste reactivity (61, 62), the quantification of innate oral-motor facial responses
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indicative of aversion or acceptance; (b) conditioned taste avoidance (CTA), which is the avoidance
of flavors or foods paired with illness (54); and (c) pica, which is the consumption of nonnutritive
substances (e.g., kaolin clay) in response to nausea-inducing agents (35, 36, 122), a behavior that
may represent an innate adaptive response to reduce the adverse effects of toxins in the organism.
Although they are time-consuming, analyses that involve multiple measures of malaise done in
concert with complementary experimentation in alternative animal models that do vomit (e.g.,
shrew and ferret) will collectively deepen our understanding of the neurobiological mechanisms
of emesis/nausea/malaise induced by GLP-1 and amylin pharmacology. Indeed, in the case of
GLP-1, we (83) and others (94, 163) have suggested that the field as a whole must utilize a multi-
model approach to disentangle physiological (e.g., regulation of food intake and blood glucose)
and pathophysiological (e.g., nausea/vomiting) effects produced by GLP-1 pharmacology.

Although current amylin- and GLP-1-based pharmacotherapies are nonspecific with regard
to the cell populations that they act on, future research must invent and explore highly site-
targeted pharmacotherapies for these systems if we are to achieve desired effects (i.e., food intake
and blood glucose reductions) without producing maladaptive responses (e.g., nausea/vomiting).
For example, in GLP-1R−/− mice, re-expression of the GLP-1R exclusively on the pancreas is
sufficient to restore much of the GLP-1 incretin effect (100). Thus, although vagal and CNS
GLP-1R activation do participate in blood glucose regulation (for a review, see 64), it is intriguing
to consider the potential beneficial glycemic effects of a second generation of GLP-1R ligands that
would specifically act on pancreatic β-cell-expressing GLP-1R. Such a ligand would theoretically
yield some glycemic improvements in T2DM patients with reduced incidence of adverse events. A
similar strategy could also be applied to the GLP-1- and amylin-mediated mechanisms controlling
for food intake and body weight. As discussed above, BBB penetrance is undoubtedly occurring for
current amylin and GLP-1 ligands, and the physiological and behavioral effects produced by the
activation of a given nucleus can be quite distinct from the responses yielded by receptor activation
at another CNS structure. For example, selective VTA or NAc core GLP-1R activation reduces
palatable food intake without producing any measured malaise in rodents (absence of CTA and
pica) (2, 38, 41). Although it would be useful to confirm that VTA/NAc core GLP-1R activation
does not produce emesis using a mammalian model capable of vomiting, the aforementioned
complementary set of data identifies these GLP-1R-expressing mesolimbic nuclei as clinically
attractive from the standpoint of creating a second-generation GLP-1 ligand to reduce food
intake without producing nausea/malaise. Such a targeted ligand is greatly needed because current
GLP-1R ligands are gaining access to the whole CNS, where GLP-1R activation in nuclei such
as the NTS or CeA will produce a CTA and/or pica response along with varying degrees of food
intake suppression (83, 96). As detailed in Table 1, many GLP-1R-expressing nuclei can modulate
food intake when activated by GLP-1 or GLP-1R agonists. The task at hand for the field is to
systematically evaluate the mechanisms by which food intake is suppressed by GLP-1R signaling
in each of these nuclei and whether any adverse events (e.g., nausea) might be contributing to the
feeding effects.

A ROLE FOR INCRETIN AND AMYLIN SIGNALING IN GASTRIC
BYPASS–MEDIATED IMPROVEMENTS IN GLYCEMIA
AND BODY WEIGHT

Bariatric surgery for the purposes of weight loss is currently among the top elective procedures
across the United States. These procedures, which alter the GI tract to either limit nutrient
exposure to absorptive sites within the proximal gut [e.g., Roux-en-Y gastric bypass (RYGB)]
and/or limit the volume of food voluntarily ingested by the patient (e.g., gastric lap banding,
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Table 1 Evidence for GLP-1-mediated feeding, glycemic, and malaise effects

Nucleus Evidence for food intake control
Evidence for glycemic

control
Nausea/malaise

evidence
NTS Physiological and pharmacological evidence Unknown Pica
AP No direct pharmacological evidence Unknown Unknown
DMV No pharmacological evidence Unknown/possible Unknown
PVH Pharmacological evidence No pharmacological evidence No CTA
ARH No pharmacological evidence Pharmacological evidence Unknown
LH Physiological and pharmacological evidence Unknown Unknown
DMH Pharmacological evidence Unknown Unknown
VMH Pharmacological evidence Unknown Unknown
VTA Physiological and pharmacological evidence Unknown No CTA or pica
NAcC Physiological and pharmacological evidence Unknown No CTA or pica
NAcSh Pharmacological evidence Unknown No CTA or pica
CeA No pharmacological evidence Unknown CTA
HPF Unknown/possible Unknown Unknown
Nodose (vagal
afferent)

Physiological and pharmacological evidence Physiological and
pharmacological evidence

Not required for pica

Abbreviations: AP, area postrema; ARH, arcuate nucleus of the hypothalamus; CeA, central nucleus of the amygdala; CTA, conditioned taste avoidance;
DMH, dorsal medial nucleus of the hypothalamus; DMV, dorsal motor nucleus of the vagus; HPF, hippocampal formation; LH, lateral nucleus of the
hypothalamus; NAcC, nucleus accumbens core; NAcSh, nucleus accumbens shell; NTS, nucleus tractus solitarius; PVH, paraventricular nucleus of the
hypothalamus; VMH, ventral medial nucleus of the hypothalamus; VTA, ventral tegmental area.

sleeve gastrectomy), have all been largely successful in promoting sustained weight loss in obese
individuals and certainly serve as the standard in weight loss treatment strategies when compared
to broadly disappointing results from most FDA-approved pharmacotherapies (131).

RYGB (especially laparoscopic RYGB) is still considered the gold standard for weight loss
surgery, although these procedures are not without their limitations. Approximately 20–30% of
RYGB patients fail to reach the typical postoperative weight loss and/or begin to regain large
amounts of weight within the first year (84, 141, 165, 183). Despite this minority of the patient
population, the vast majority of obese individuals undergoing bariatric surgeries achieve tremen-
dous and unmatched metabolic and health outcome improvements. Perhaps the most remarkable
positive health outcome from RYGB is that obese patients with T2DM see profound improve-
ments in glycemic control, often within a matter of days (22, 141, 158, 180). Such strong metabolic
improvements in RYGB patients have prompted considerable clinical and basic science research
focused on elucidating the hormonal and metabolic mechanisms that may mediate these effects.
Current thinking has shifted away from the original idea that metabolic improvements following
RYGB were principally due to restricted absorption of nutrients, to new efforts aimed at un-
locking what impact gastric bypass has on the neuroendocrine controls that govern food intake
and glycemic regulation (158, 184, 201). Prevalent among this emerging research is the idea that
GI-derived incretin hormones and amylin serve an integral role in enhancing satiation as well
as regulating blood glucose in postoperative gastric bypass patients (98). Of similar interest are
investigations that examine alterations in vagally mediated gut-to-brain communication following
RYGB and what role, if any, these altered vagal communications play in weight loss and glycemic
control (177).
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The Vagus Nerve and RYGB

The role of vagal afferent innervation within the GI tract and subsequent transmission of sensory
signals regulating food intake are well established (18, 170). Removing vagal input to the hind-
brain via chemical or surgical ablation of selective branches can significantly diminish the satiating
potency of numerous hormones and signaling molecules controlling energy balance. Similarly,
diet-induced obesity may result in reduced sensitivity to satiation signals (see, e.g., 40) and increase
expression of orexigenic vagal signaling (137), either of which could lead to or exacerbate hyper-
phagia and obesity. Despite such well-known involvement in energy balance, there exists a paucity
of reports that address whether vago-vagal signaling alterations contribute to metabolic improve-
ments following RYGB. During this procedure it is likely that a significant number of vagal fibers
are resected, which may impact satiation signaling as well as hormonal release. Recent work by
Peters and colleagues (142) suggests that the effects of vagotomy involve a considerable degree of
plasticity within both vagal afferent and synaptic transmission of vagal fibers to the NTS. These ex-
periments highlight a potential system of transient withdrawal and remodeling of the vagal network
that may serve to explain some of the neuroendocrine effects of gastric bypass. Surgical resection
of the CHB of the vagus, a primarily sensory branch with afferent innervation of the liver, proximal
duodenum, and pancreas, has little effect on intake following RYGB in the rat (177). However,
these results do not preclude involvement of more distal branches/sites of vagal innervation such
as the celiac branch, which as a result of anatomical repositioning of the roux and common limbs,
could receive more nutrient and/or vagal sensory activation than in normal physiology.

Incretin Hormones and Amylin Following RYGB: Why Is RYGB So Successful?

Although many hormones and gut peptides have alterations in their secretion, plasma concentra-
tions, and postprandial responsiveness following RYGB, for the purposes of brevity we focus here
on GLP-1, peptide YY (PYY)3-36, and amylin as major neuroendocrine signals accompanying
both the weight loss and normalization of glycemia following RYGB. Numerous preclinical and
clinical studies are in agreement that RYGB patients show a rapid and sustained increase in post-
prandial GLP-1 secretion that is greater in magnitude than that seen in either obese nonsurgical
controls or obese controls undergoing other gastrointestinal surgery (i.e., gastric banding) (98,
132, 168). Similar results have been shown with PYY3-36 (129, 168). Collectively, these findings
are consistent with the notion that the rapid and sustained postprandial GLP-1 and PYY3-36
secretion observed following RYGB could result from a greater concentration of nutrients being
exposed to the L-cells in the jejunum and ileum because a large portion of the stomach and all of the
duodenum have been bypassed. An additional, nonexclusive idea is that specific enteroendocrine
cells, like the L-cells, adapt in response to the anatomical reorganization of RYGB, resulting in
enhanced proliferation and expression of the cell type. Indeed, there are reports showing an up-
regulation of immunoreactivity for GLP-1- and PYY-producing cells in the intestine following
RYGB (128, 131).

It would be useful to elucidate how enhanced secretion/satiating ability of GLP-1 and PYY3-36
could impact obesity treatment as a welcome alternative to radical bariatric procedures. Recent
data from Reidelberger and colleagues (148) showed that when exendin-4 and PYY3-36 were coad-
ministered to diet-induced obese rats using multiple dosing/administration strategies, including
doses consistent with plasma observations in RYGB patients, the food intake– and body weight–
suppressive effects became increasingly complex to interpret owing to the apparent tolerance of
dosing, tachyphylaxis, and counteraction by competing orexigenic mechanisms, which together
mitigate the suppressive effects of exendin-4 and PYY3-36. Thus it is clear that the simple boost-
ing of the signal of distal gut satiation/incretin hormones via RYGB and the exact mechanisms
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that account for this increase in postprandial GLP-1 and PYY secretion following RYGB warrant
further investigation. The consequences are just beginning to be examined in both humans and
animals (95, 99, 126, 127, 158, 184, 201).

Among the most emergent potential players in the peripheral signaling enhancement following
RYGB is amylin. Postprandial increases in amylin have been reported following RYGB (178);
however, over time (and unlike GLP-1 and PYY3-36) amylin levels tend to decrease or show little
change (20). As highlighted above, it is also likely that amylin and GLP-1 act through distinctive
and largely complementary mechanisms to produce ameliorative effects on weight loss and
maintenance as well as restoration of glucose homeostasis following RYGB (for a review, see 155).

SUMMARY AND FUTURE DIRECTIONS FOR
THERAPEUTIC ADVANCEMENT

The opportunity for advancement in pharmaceutical treatments of obesity and T2DM continues
to expand with the new discoveries of the physiological and pathophysiological effects mediated
by the amylin and GLP-1 systems. As detailed above, further exploration of the cellular/molecular
signaling pathways of GLP-1R and amylin receptor activation will likely provide new opportu-
nities for future pharmacotherapies targeting signaling pathways that interact with the GLP-1
and amylin systems. The development of second-generation receptor agonists for GLP-1R and
the amylin receptor that can selectively target specific nuclei in the CNS may also provide an
opportunity to treat diseases without producing undesirable adverse events (e.g., nausea). Recent
discoveries of GLP-1 and amylin action in the mesolimbic reward system in control of energy bal-
ance are also exciting when one considers the possible implications for pharmacological targeting
of these systems as a means to treat other diseases, such as drug addiction and depression, that are
associated with a disrupted perception of reward and pleasure. Finally, given the redundancy of
neuroendocrine systems involved in the regulation of energy balance as well as in the maintenance
of blood glucose concentrations, it seems logical that a realistic and sustainable pharmacological
approach to the treatment of either obesity or T2DM will require a cocktail of new, highly spe-
cific drugs that act in concert to produce an enhanced suppression of food intake and/or glycemic
concentration. As discussed in this review, combination drug therapies would be well suited to
include amylin- and/or GLP-1-based ligands.
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