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The adipose-derived hormone leptin signals in the medial nucleus tractus solitarius (mNTS) to suppress food intake, in part, by amplifying

within-meal gastrointestinal (GI) satiation signals. Here we show that mNTS leptin receptor (LepRb) signaling also reduces appetitive and

motivational aspects of feeding, and that these effects can depend on energy status. Using the lowest dose that significantly suppressed

3-h cumulative food intake, unilateral leptin (0.3 mg) administration to the mNTS (3 h before testing) reduced operant lever pressing for

sucrose under increasing work demands (progressive ratio reinforcement schedule) regardless of whether animals were energy deplete

(food restricted) or replete (ad libitum fed). However, in a separate test of food-motivated responding in which there was no

opportunity to consume food (conditioned place preference (CPP) for an environment previously associated with a palatable food

reward), mNTS leptin administration suppressed food-seeking behavior only in chronically food-restricted rats. On the other hand,

mNTS LepRb signaling did not reduce CPP expression for morphine reinforcement regardless of energy status, suggesting that mNTS

leptin signaling differentially influences motivated responding for food vs opioid reward. Overall results show that mNTS LepRb signaling

reduces food intake and appetitive food-motivated responding independent of energy status in situations involving orosensory and

postingestive contact with food, whereas food-seeking behavior independent of food consumption is only reduced by mNTS LepRb

activation in a state of energy deficit. These findings reveal a novel appetitive role for LepRb signaling in the mNTS, a brain region

traditionally linked with processing of meal-related GI satiation signals.
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INTRODUCTION

Leptin, secreted primarily from white adipose cells, acts on
receptors (leptin receptor, LepRb) in the brain to reduce
body weight by suppressing food intake and increasing
energy expenditure. Historically, attention has been direc-
ted toward leptin’s action in the hypothalamus, particularly
the arcuate hypothalamic nucleus (ARC). More recent
findings reveal that leptin’s powerful control over energy
balance is anatomically distributed (Grill, 2010; Grill and
Kaplan, 1990; Grill and Kaplan, 2002a) as it involves
contributions from midbrain and forebrain regions such
as the ventral tegmental area (Fulton et al, 2006; Hommel
et al, 2006) and the hippocampus (Kanoski et al, 2011) that
are associated with the control of motivational, learned, and
rewarding aspects of food intake, as well as in extra-ARC
hypothalamic nuclei (Leinninger et al, 2009; Zhang et al,
2011) and hindbrain nuclei (Grill et al, 2002b; Huo et al,
2007; Schwartz and Moran, 2002; Skibicka and Grill, 2009)

whose neural processing is typically associated with the
control of need-based food intake (ie, feeding driven by
energy deficit). Within the hindbrain, the LepRb is most
densely expressed in the medial nucleus tractus solitarius
(mNTS) of the dorsal vagal complex (Caron et al, 2010; Elias
et al, 2000; Huo et al, 2006; Li et al, 1999; Patterson et al,
2011), which is the first CNS site to receive vagal afferent-
mediated gastrointestinal (GI) signals and is a critical
nucleus for satiation signal processing and meal size control
(Grill and Hayes, 2009; Schwartz, 2010). Indeed, LepRb
signaling in mNTS neurons potently reduces food intake by
amplifying the food intake-suppressive effects of various
within-meal GI-derived satiation signals, including the
intestinally secreted peptide cholecystokinin (Hayes et al,
2010), mechanical distention of the stomach (Huo et al,
2007), and intestinal delivery of a mixed nutrient meal
(Kanoski et al, 2012b). These findings have identified mNTS
neurons as a key site of integration between leptin signaling
and GI satiation signals in the control of meal size (for
review, see Grill, 2010; Grill and Hayes, 2012).

Here we examine a novel role for mNTS LepRb signaling
in the control of food intake. Experiments described directly
test the hypothesis that the anorectic effects triggered by
mNTS LepRb signaling are not exclusively mediated
through amplification of within-meal GI-derived satiation
signals, but also involve the suppression of appetitive and
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motivational aspects of feeding, which include: (a) an
animal’s willingness to work for palatable food, and (b) food
seeking independent of orosensory and/or postingestive
contact with food. Leptin or vehicle are infused intra-mNTS
before behavioral tests of learned food-motivated respond-
ing using a dose of leptin (0.3 mg) that was first determined
to be the lowest effective dose for significant short-term
(3 h) food intake suppression in free-feeding rats. Will-
ingness to work for food is examined using an operant
lever-pressing paradigm with a progressive ratio (PR)
reinforcement schedule in which the number of lever
presses required to obtain food reinforcement increases
exponentially. Food-seeking behavior is assessed using a
conditioned place preference (CPP) paradigm in which
freely moving rats chose between a location/environment
where palatable food (high in saturated fat and sucrose) was
previously available for consumption, vs another location
where food was neither presented nor consumed.

Leptin’s control over energy balance is highly dependent
on energy status. This is most clearly supported by the fact
that levels of endogenous circulating leptin directly correlate
with overall adiposity (Ahima et al, 2000), and by studies
showing that the engagement of intracellular signaling
pathways following neuronal LepRb activation is disrupted
in the pathophysiological state of obesity (Munzberg et al,
2005). Here we determine whether effects of mNTS LepRb
activation on food-motivated responding (both for operant
responding and CPP) are dependent on energy status by
comparing effects in rats whose access to food is chronically
restricted (daily rations) vs rats given ad libitum access to
food in the home cage throughout the duration of the
experiment. In the latter case, reduction of appetitive
responding would suggest that mNTS LepRb activation
inhibits food-directed behaviors that are driven by factors
other than caloric deficit resulting from food restriction.

Both CPP and operant lever-pressing paradigms have
been used to evaluate the effects of both drug and food
reward. The common neural and neurochemical controls of
these food and drug reward-mediated effects continue to
attract attention (eg, Kenny, 2011; Tomasi and Volkow,
2013; Volkow et al, 2013a, b). The extent that CNS LepRb
signaling reduces appetitive behavior directed toward
reinforcers other than food is largely unknown. Here we
examine whether mNTS LepRb activation reduces moti-
vated responding for opioid-based reward (CPP for
morphine), both in energy-deplete and -replete subjects.
The potential for mNTS LepRb signaling to reduce
appetitive responding for morphine is supported by
findings showing that leptin and opioid agonists (either
peripheral or centrally delivered) have opposing effects on
mesolimbic dopaminergic signaling (Baldo and Kelley,
2007; De Luca et al, 2011; Fulton et al, 2006; Hommel
et al, 2006), suggesting that leptin and morphine may
differentially influence motivated behavior by acting on a
common neurochemical system. Further, intracerebroven-
tricular leptin administration reduces the food deprivation-
induced relapse to heroin seeking (ie, reinstatement of
conditioned responding for morphine following extinction)
in rats (Shalev et al, 2001).

Overall, our results show that mNTS LepRb signaling
reduces appetitive responding for palatable food, and
these effects can depend on energy status. The reduction

of food-motivated responding by mNTS LepRb activation in
the energy replete (nondeprived) state was observed, but
only in a test that allowed for consumption of the food
reinforcement (operant responding for food reinforcement).
By contrast, in the absence of direct contact with food (CPP
paradigm) mNTS leptin reduced food-seeking but only
under food-restricted conditions. Surprisingly, mNTS leptin
signaling had no effect on learned appetitive behavior
directed toward opiate reinforcement. These novel findings
have implications, not only with respect to the leptinergic
control of energy balance, but also regarding food intake
control by mNTS neural processing more generally.

MATERIALS AND METHODS

Subjects

Adult male Sprague–Dawley rats (250–300 g upon arrival;
Charles River Laboratories, Wilmington, MA), housed
individually in hanging metal cages and maintained on a
12 : 12-h light–dark cycle (lights off at 0900 hours for Exps 1–
2; lights on at 0800 hours for Exps 3–4), had ad libitum
access to rodent chow (5001 Rodent diet; Lab Diets, St Louis,
MO) and water unless otherwise noted. All protocols and
procedures conformed to the institutional standards of the
University of Pennsylvania Animal Care and Use Committee
and were approved by the committee.

Surgery

Rats were injected with ketamine (90 mg/kg; Bulter Animal
Health Supply, Dublin, OH), xylazine (2.7 mg/kg; Anased,
Shenandoah, IA), and acepromazine (0.64 mg/kg; Bulter
Animal Health Supply) anesthesia and analgesia (2 mg/kg
Metacam; Boehringer Ingelheim Vet-medica, St Joseph,
MO) for all surgeries. Bilateral guide cannulae (26-gauge;
Plastics One, Roanoke, VA; 1.5 mm spacing between
cannulae) were implanted with the tip stereotaxically
positioned above the mNTS target injection site using one
of two coordinate systems (coordinates varied by surgeon to
maximize overall accuracy): (1) midline, 1.0 mm posterior
to occipital crest, 6.7 mm ventral from skull surface,
injection targeted 2.0 mm below end of guide cannula; or
(2) midline, 2.0 mm anterior to occipital crest, 6.8 mm
ventral from skull surface using a 15-degree angle (negative
slope in anterior to posterior direction), injection targeted
1.5 mm below end of guide cannula. Procedures for
unilateral mNTS injections (right side) were based on our
previous work (eg, Hayes et al, 2009, 2011; Kanoski et al,
2012a, b; Spaeth et al, 2012) and involve 100 nl infusion
(delivery rate of 5 ml/min via Harvard Apparatus PHD 2000
infusion pump; 28 gauge indwelling injector cannulae)
followed by a 30- to 40-s diffusion period where the
injectors are left in place. Intended anatomic positions of
mNTS injection sites were evaluated 1 week post-surgery by
measurement of the sympathoadrenal-mediated glycemic
response to an injection of 5-thio-D-glucose (24 mg/100 nl
unilateral mNTS injection; Ritter et al, 1981). A post-
injection elevation in baseline plasma glucose level of 100%
or greater was required for subject inclusion (assessed
via tail nick at baseline, 30 min, and 60 min following
5TG infusion). Cannula placement was further confirmed
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postmortem via bilateral histological location of 100 nl
volume injection of Chicago sky blue ink. A representative
injection placement is depicted in the right mNTS in
Figure 1 (Note: vehicle and leptin were administered
unilaterally for all experiments). Animals without confirma-
tion of functional and anatomical injection placement were
removed from analyses. Overall, four animals were excluded
from Exp. 2 analyses, four animals were excluded from Exp.
3 analyses, and five animals were excluded from Exp. 4
analyses.

Procedures

Experiment 1: free-feeding food intake assessment. Naive
rats were unilaterally infused intra-mNTS unilaterally with
0.0mg (vehicle; sodium bicarbonate), 0.1, 0.3, or 0.6mg leptin
(100 nl volume) immediately before dark onset using a
within-subjects design. Treatments were separated by 2–3
days. The rats were individually housed in wire-bottom cages
with an access hole to a cup containing powdered rodent
chow (5001 Rodent diet; Lab Diets) that rested on an
electronic scale. The food cup weight was monitored by
computer software (LabView). This automated-feeding
system tracks cumulative food intake analysis via custom
software over each 24-h period without disturbing the
natural-feeding cycle of the rats (ie, eliminates experimenter
interruption).

Experiment #2a: PR operant responding for sucrose in
chronically food-restricted rats. Naive rats (n¼ 11) were
given operant lever press training for sucrose reinforcement
as previously described (Davis et al, 2011; Kanoski et al,
2013). Before training rats were given daily chow rations to
gradually (over 5–7 days) reduce body weight to 85% of an
ad libitum body weight established before training. Daily
rations were given throughout training and testing to
maintain this 85% body weight criterion. Training was
carried out over 6 days with a 1-h session each day in
conditioning boxes (Med Associates; MedPC IV Software,
St Albans, VT). During the first 2 days, a fixed ratio
autoshaping procedure was used where each lever press
earned a 45-mg sucrose pellet (Bio-Serv, Frenchtown, NJ)
(FR1); a free sucrose pellet was also dispensed for every
600 s that elapsed without operant-based reinforcement.
The animals then received 2 days of an FR1 schedule with

no autoshaping component followed by 2 days of FR3
training. For all procedures, the right lever was the ‘active’
lever; a left ‘inactive’ lever served as a control (dummy
lever) for non-conditioned elevations in responding.

The rats were given two tests (within-subjects design, 2
rest days intervened between tests) using a PR reinforce-
ment schedule. The unilateral mNTS injections (100 nl
vehicle or 0.3 mg leptin; order counterbalanced) were given
3 h before each test session. The 3-h timing (used for Exps
2–4) was chosen based on results of Exp. 1 showing this
dose to be the lowest effective dose for significant food
intake suppression 3 h after injections. After injections, the
animals were returned to their home cages for the 3-h time
period between injections and PR testing. The response
requirement of the PR schedule increased progressively as
previously described (Davis et al, 2011; Kanoski et al, 2013),
using the following formula: F(i)¼ 5e^0.2i–5, where F(i) is
the number of lever presses required for next pellet at
i¼ pellet number. The breakpoint for each animal was
defined as the final completed lever press requirement that
preceded a 20-min period without earning a reinforcer.

Experiment #2b: PR operant responding for sucrose in ad
libitum-fed rats. Exp. 2b was conducted in a separate
group of rats (n¼ 11). Procedures were identical to Exp. 2a,
except that the rats were not food restricted (ad libitum
access to chow in home cage) throughout the entire
experiment, except during the 3-h period between mNTS
injections and PR testing when food was removed from the
home cage.

Experiment #3a: CPP for food reward in chronically food-
restricted rats. Before and throughout training and
testing, naive rats (n¼ 13) were given the 85% body weight
food restriction regime described in Exp. 2a. The proce-
dures for appetitive CPP were as we have previously
described (Kanoski et al, 2011). All CPP training and
testing procedures were conducted in a dimly lit room. The
procedures were conducted in two identical conjoined
plexiglass CPP compartments (74 cm long, 57.4 cm wide,
and 24.7 cm wall height) with a removable divider wall in
the center. The two sides (henceforth referred to as contexts
or locations) of the CPP chamber were made distinguishable
by varying wall color (white vs black plexiglass), floor
texture (plexiglass vs steel grid), and orientation of stripes
(adhesive tape applied vertically vs horizontally) on the
walls. Rats were first allowed to freely explore the CPP
chamber during one 10-min habituation session in which
the divider wall was removed and the time spent in each of
the two contexts was recorded by an experimenter. For each
rat, the context that was least preferred during this
habituation session was assigned as the food-paired context
for subsequent training, whereas the more preferred side
was never paired with food. CPP training consisted of six,
20-min sessions (one session per day): three sessions where
the rat was isolated in the food-paired context and three
sessions isolated in the nonfood-paired context. During
food-paired training sessions, a total of 5 g of a high-fat/
high-sucrose diet (Research Diets; D12492) was divided into
five aliquots that were scattered throughout the context,
whereas no food was given during nonfood-paired sessions.

Figure 1 Representative mNTS injection site.
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All rats consumed the entire 5 g during each food-paired
session. The training order was randomized and pair-
matched across groups. The first three and last three
sessions occurred on continuous days; sessions 1–3 and 4–6
were separated by two intervening days.

Testing occurred 2 days after the sixth training session
using a between-subjects design. Rats were assigned to
groups matched for baseline context preference (n¼ 7 for
leptin, n¼ 6 for vehicle). For each rat, a unilateral mNTS
injection of either vehicle or leptin (0.3 mg) was given 3 h
before a 15-min video-recorded test session in which the
center divider was removed and no food was given.
The rats were returned to the home cage for the 3 h
between injections and CPP testing. The time spent in
each context during the test was later calculated from
analysis of the video recording made by an experimenter
blind to the group assignments and context food
assignments. The dependent variable used for analysis
was the percentage shift in preference score for the
food-associated context from the baseline session compared
with the test session.

Experiment #3b: CPP for food reward in ad libitum-fed
rats. Our pilot work (data not shown) showed that using
the same training regime as Exp. 3a resulted in unreliable
establishment of CPP in non-restricted (ad libitum fed) rats
using the same training regime as Exp. 4. Thus, the number
of training sessions was increased from 6 (3 per context) to
16 (8 per context) to ensure baseline shift in CPP in vehicle-
treated ad libitum-fed rats. All other procedures were
identical to Exp. 4 except that the rats were not food
restricted at any point throughout the experiment (except
for during the 3-h period between mNTS injections and CPP
testing). Four training sessions were given each week with
no more than two intervening days between sessions.

Experiment #4a: CPP for morphine reward in chronically
food-restricted rats. Naive rats (n¼ 18) were maintained
on 85% food restriction regime as described for Exps 2a and
3a. The procedures for morphine CPP were modified from
Harris et al (2007) and used the came CPP apparatuses as
Exp. 3. A 15-min habituation session was first conducted as
described for Exp. 3, and the morphine-associated side was
assigned for each rat based on their least preferred location
during the habituation session. Three days later, training
began and continued across 3 consecutive training days. For
each training day, rats were given IP injections of either
saline (vehicle) or morphine (10 mg/kg) immediately before
being confined to the appropriately assigned compartment
for 30 min. Morphine and saline sessions alternated between
the morning and afternoon with a 4-h interval between
sessions. Rats given morphine before the morning training
session were given saline before being placed in the
opposite chamber in the afternoon, and on subsequent
days received saline in the morning and morphine in the
afternoon (ABA order). The number of rats in which the
morning training session on the first training day involved
morning saline vs morphine injections was counterbalanced
across the two drug groups. Two days after the last training
session, the rats received either intra-mNTS unilateral
vehicle or leptin (0.3 mg) injections 3 h before a 15-min

CPP test in which no prior IP morphine or saline injections
were given and the divider wall was removed. Drug groups
(n¼ 8 for vehicle, n¼ 10 for leptin) were assigned according
to baseline preference and body weight. The amount of time
spent in each of the two separate contexts during testing
was calculated via analysis of video recording by an
experimenter blind to the treatment groups and the
assigned drug locations.

Experiment #4b: CPP for morphine reward in ad libitum-
fed rats. A separate group of naive rats (n¼ 18) were
separated into vehicle or morphine (IP; 10 mg/kg/day)
groups (n¼ 9 per group) and underwent the same
procedures as Exp. 4a except they had ad libitum access
to rat chow (except for the 3-h period between mNTS leptin
injection and CPP testing).

Data and Statistical Analyses

Data from Exp. 1 were analyzed via ANOVA using drug
treatment as a repeated-measure variable. When significant
overall main effects of drug were found, individual drug
dose treatments were compared with vehicle treatment
using Tukey’s post hoc comparisons. Repeated-measures
ANOVA was also used to compare drug conditions in the
PR experiments (Exps 2a and 2b), whereas one-way
ANOVA was used for the between-subjects CPP experi-
ments (3a, 3b, 4a, and 4b). Alpha level for significance was
set at 0.05 for all described experiments.

RESULTS

Exp. 1: mNTS Leptin Administration Reduces Chow
Intake in Free-Feeding Rats

The two higher doses of leptin (0.3 and 0.6 mg) suppressed
cumulative chow intake relative to vehicle at 3 h after drug
administration, whereas all three doses suppressed intake at
24 h (Figure 2). The main effect of leptin was significant at
3 h (F(3, 24)¼ 5.08, Po0.01) and 24 h (F(3, 24)¼ 5.01,
Po0.01). Although the main effect of leptin was also
significant at 1 h (F(3, 24)¼ 3.27, Po0.05), no individual
leptin treatment significantly differed from vehicle in the
post hoc Tukey’s comparisons.

Figure 2 Cumulative home cage food intake in non-restricted
rats following mNTS leptin administration (means±SEM; *indicates
P-valueo0.01).
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Exps 2a and 2b: mNTS Leptin Administration Reduces
Operant Responding for Sucrose in Both Chronically
Food-Restricted and Free-Feeding Rats

Leptin (0.3 mg) delivered to the mNTS 3 h before testing
significantly suppressed the breakpoint for lever press
responding for sucrose under a PR schedule for both food-
restricted (Exp. 2a) and non-restricted, ad libitum-fed rats
(Exp. 2b). This conclusion is supported by significant drug
effects for the number of reinforcers earned before break-
point (Figure 3a), (F(1, 10)¼ 10.50, Po0.01 for Exp. 2a;
F(1, 10)¼ 11.21, Po0.01 for Exp. 2b), the breakpoint (data
not shown), (F(1, 10)¼ 10.97, Po0.01 for Exp. 2a;
F(1, 10)¼ 9.65, Po0.05 for Exp. 2b), and the number of
lever presses on the active lever before breakpoint
(Figure 3b), (F(1, 10)¼ 9.33, Po0.05 for Exp. 2a;
F(1, 10)¼ 7.68, Po0.05 for Exp. 2b). For both Exps 2a and
2b, the number of lever presses on the inactive control lever
was not influenced by mNTS leptin delivery (data not
shown), (F(1, 10)o3.17, P40.1).

Exps 3a and 3b: CPP for Food Reward is Reduced by
mNTS Leptin Delivery in Food-Restricted, but Not Ad
Libitum-Fed Rats

Unlike vehicle-treated rats, food-restricted rats infused
intra-mNTS w/0.3 mg leptin before CPP testing did not
display a shift in preference from baseline (before training)
for the food-associated environment (Exp. 3a; Figure 4).

However, mNTS leptin delivery did not impact the
expression of the food reward CPP relative to vehicle
treatment for non-restricted rats (Exp. 3b; Figure 4).
The main effect of drug was significant for CPP testing in
Exp. 3a (F(1, 11)¼ 8.36, Po0.05), but not for Exp. 3b
(F(1, 23)¼ 0.10).

Exps 4a and 4b: CPP for Morphine-Associated
Environment is Not Affected by mNTS LepRb Activation

Relative to vehicle treatment, 0.3 mg leptin delivery to the
mNTS did not impact the expression of CPP for an
environment associated with morphine reinforcement
(Figure 5). This was the case for both food restricted
(Exp. 4a), (F(1, 16)¼ 0.23), and non-restricted rats (Exp.
4b), (F(1, 16)¼ 0.50).

DISCUSSION

Leptin’s anorectic effects are mediated, in part, by amplify-
ing the food intake-suppressive effects of GI satiation
signals via LepRb signaling in mNTS neurons (Hayes et al,
2010; Huo et al, 2007; Kanoski et al, 2012b). Here we
highlight a novel role for mNTS LepRb signaling in the
suppression of appetitive responding for palatable food.
Results revealed reduced food-motivated responding fol-
lowing mNTS LepRb activation in two appetitive behavioral
tests: (1) operant lever pressing for sucrose under a PR

Figure 3 Operant lever pressing for sucrose in a progressive ratio reinforcement test for both food-restricted and non-restricted rats, shown as: (a) the
number of reinforcers (45 mg sucrose pellets) earned before reaching breakpoint criterion, and (b) the number of active lever presses performed before
reaching breakpoint criterion (means±SEM; *indicates P-valueo0.01).

Figure 4 Conditioned place preference expression for an environment
previously associated with consuming palatable food (high fat and high
sucrose) for both food-restricted and non-restricted rats (means±SEM;
*indicates P-valueo0.01).

Figure 5 Conditioned place preference expression for a location
previously associated with morphine reinforcement for both food-
restricted and non-restricted rats (means±SEM).
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reinforcement schedule, and (2) the expression of a CPP for
palatable (high fat and high sucrose) food. The pattern of
these effects were dependent on: (1) the presence vs absence
of food consumption during testing, (2) the long-term
energy status of the animals (chronic food restriction vs ad
libitum-fed), and (3) nature of the positive reinforcement
(palatable food vs morphine). Each of these features of our
findings is discussed below.

Effort-based responding for sucrose in the PR lever-
pressing test was reduced by mNTS LepRb activation
regardless of whether the rats were chronically food
restricted (Exp. 2a) or ad libitum fed (Exp. 2b). The PR
breakpoint test conditions allowed for periodic consump-
tion of the reinforcement after the exponentially increasing
operant lever press demands were met (totaling approxi-
mately 0.33–0.75 g consumed per rat). Thus, effects on
motivation to obtain the reward cannot be separated in
terms of appetitive/incentive vs consummatory aspects of
the reinforcement. In this sense, the reduced lever press
responding for sucrose observed following mNTS LepRb
activation can be interpreted as being attributable to effects
on orosensory or postingestive processing (eg, amplifying
satiation signals or altering taste) as opposed to effects on
appetitive, food-seeking behavior per se. However, the case
for suppression of appetitive behavior independent of
orosensory or postingestive processing is supported by
Exp. 3a results (CPP in food-restricted rats). In this case,
CPP expression for food reward was suppressed by mNTS
leptin despite the fact that the animals received no food
during the 24-h period preceding CPP testing, nor did they
receive food during the CPP test. In addition, these findings
highlight a potential CNS site of action contributing to the
inhibition of food-seeking/hoarding previously observed in
food-restricted hamsters treated with peripheral or ICV
leptin (Buckley and Schneider, 2003; Keen-Rhinehart and
Bartness, 2008).

Unlike results from PR lever-pressing tests, CPP for food
reward was not influenced by mNTS LepRb activation in
animals that were maintained on an ad libitum feeding
schedule and were only food restricted for 3 h before and
during CPP testing (Exp. 3b). The differential effect of
energy status on mNTS leptin-induced inhibition of lever
pressing vs CPP may be based, in part, on the different
underlying neural substrates between these two behavioral
tests. Unlike the PR test, CPP expression requires
hippocampal-dependent memory retrieval of external
contextual cues. In addition to processing external
contextual cues, neural processing in the hippocampus is
also required for encoding the relationships between
internal states (eg, different levels of food deprivation),
the external environment, and goal-directed behavior
(Kennedy and Shapiro, 2004). It may be that mNTS LepRb
activation inhibits hippocampal-dependent contextual
memory retrieval via an ascending polysynaptic pathway
(eg, Castle et al, 2005), and that activation of this pathway
is dependent on internal context (upregulated during
energy restriction).

Alternatively, the different pattern of PR vs CPP results
may be based on the fact that these two tests differ with
regards to the opportunity for the animals to consume the
food. For example, mNTS LepRb signaling reduces moti-
vated responding for food reward independent of energy

status when orosensory and postingestive contact with food
occurs (PR lever-pressing schedule; Exps 2a and 2b),
suggesting that leptin signaling in this brain region may
augment postingestive satiation signaling in both an energy-
deplete and -replete state. However, in the absence of food
intake (CPP for food; Exps 3a and 3b), LepRb activation in
the mNTS only reduces motivated responding for food in an
energy-deplete state (chronic food restriction). According
to Rosenbaum and Leibel (2011), when energy stores drop
below a neurally encoded threshold for minimum body fat,
a compensatory physiological drive is invoked to help
restore adipose stores. Within this framework, low endo-
genous LepRb activation on mNTS neurons in states of
chronic food restriction may serve as a neural signal to
engage in food-seeking behavior, and this behavior is
suppressed when leptin levels are normalized endogenously
(weight or adipose gain) or pharmacologically via mNTS
exogenous delivery (Exp. 3a), whereas food seeking that
occurs in the absence of metabolic need (Exp. 3b) may be
less influenced by mNTS leptin signaling.

Unlike CPP for food reinforcement, CPP for morphine
reinforcement was not affected by mNTS LepRb activation
regardless of whether the animals were food restricted or
maintained on ad libitum feeding. These results were
unexpected for several reasons. First, CNS-delivered leptin
(forebrain ventricle) reduces self-administration of reward-
ing electrical stimulation of the lateral hypothalamic area
(LHA) in rats (Fulton et al, 2000, 2004), suggesting that CNS
leptin may reduce reward value more generally. Consistent
with these findings, leptin acts on receptors in the VTA to
modulate meso-accumbal dopamine transmission and
reduce feeding (Baldo and Kelley, 2007; Fulton et al, 2006;
Hommel et al, 2006). One interpretation is that leptin action
on receptors in certain forebrain and midbrain nuclei, such
as the LHA and VTA, suppresses motivated responding for
a range of reinforcers, whereas mNTS LepRb signaling is
more specific to food reinforcement. However, there is
evidence that LepRb and opioid receptor signaling interact
in mNTS neurons based on findings that these systems have
opposing effects on vagally mediated excitatory afferent
drive. Neurophysiological data from Appleyard, Peters, and
others show that while opioid agonists reduce the excitatory
vagal afferent drive on mNTS neurons (Appleyard et al,
2005; Cui et al, 2012), leptin activates cultured nodose
ganglia neurons in a cooperative manner with CCK (Peters
et al, 2004, 2005, 2006). Further, peripheral administration
of naloxone, an opioid receptor antagonist, decreases meal
size in food-restricted sucrose-fed rats (Glass et al, 2001), an
effect also observed following CNS or peripheral LepRb
agonist delivery (Eckel et al, 1998; Kahler et al, 1998;
Zorrilla et al, 2005). Thus, although leptin and opioid
receptor activation appear to interact by differentially
modulating GI-derived satiation signaling, our CPP results
suggest that with regards to appetitive responding, mNTS
LepRb signaling may have selective effects on reducing
motivation to obtain food reinforcement. However, we note
that this hypothesis requires testing across a range of other
appetitive reinforcements. An alternative interpretation is
that the differential effects of mNTS LepRb activation on
appetitive responding for food vs opioid reinforcement
is based on differences in reward magnitude. In other
words, the putative higher reward magnitude of morphine
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compared with food reinforcement may account for the
differential effects of mNTS leptin on CPP responding. This
interpretation is unlikely, however, given that mNTS leptin
reduced CPP for food but not morphine in food-restricted
rats despite the fact that the parameters used for CPP
training and testing in these two experiments (Exps 3a and
4a) yielded comparable preference shifts following vehicle
administration.

Overall results revealed that mNTS LepRb activation
reduced food-seeking behavior and effort-based respond-
ing for palatable food. These findings alter the conven-
tional wisdom that learned incentive and motivational
aspects of feeding are uniquely controlled by neural
processing in mesencephalon, diencephalon, and telence-
phalon regions. Mesolimbic dopaminergic signaling from
dopamine-producing VTA neurons to ventral striatal
nuclei is generally considered to be a central neural system
in controlling incentive and motivational components of
ingestion (Baldo and Kelley, 2007; Berridge, 2007; Kelley,
2004; Kenny, 2011; Volkow et al, 2011). Indeed, both CPP
and operant lever pressing for food reward are modulated
by manipulations in striatal DA receptor activity (for
review, see Baldo et al, 2013). Our results suggest that food-
seeking behavior also involves neuroendocrine signaling in
the hindbrain, which likely engages ascending neural
communication to mesolimbic nuclei that are traditionally
linked with appetitive control. Consistent with this notion,
ascending neural pathways have been characterized from
the mNTS to the VTA (Rinaman, 2010), as well as from the
mNTS to the nucleus accumbens (Alhadeff et al, 2012;
Shekhtman et al, 2007). The role of these ascending
pathways in the suppression of appetitive responding by
mNTS LepRb signaling remains to be determined. A
related area for future mechanistic follow-up work is to
delineate the intracellular and downstream neurochemical
mediators of mNTS LepRb-mediated inhibition of food-
motivated behavior. Recent data reveal that GLP-1-produ-
cing (preproglucagon (PPG)-expressing) neurons in the
mNTS project to the VTA and nucleus accumbens where
GLP-1 receptor (GLP1-R) activity modulates feeding and
food-motivated responding (Alhadeff et al, 2012; Dickson
et al, 2012; Dossat et al, 2011). It may be that LepRb
activation on mNTS neurons augments PPG neural
transmission to mesolimbic GLP-1R-expressing nuclei via
either direct (PPG and LepRb are co-expressed in mNTS
neurons for the mouse (Garfield et al, 2012; Goldstone
et al, 1997; Huo et al, 2008)) or indirect pathways (PPG and
LepRb are not co-expressed in mNTS neurons for the rat;
Huo et al, 2008).
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